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ABSTRACT

In object-oriented programming, a method is pure if calling the
method does not change object states that exist in the pre-states
of the method call. Pure methods are widely-used in automatic
techniques, including test generation, compiler optimization, and
program repair. Due to the source code dependency, it is infeasible
to completely and accurately identify all pure methods. Instead,
existing techniques such as ReImInfer are designed to identify a
subset of accurate results of pure method and mark the other meth-
ods as unknown ones. In this paper, we designed and implemented
MetPurity, a learning-based tool of pure method identification.
Given all methods in a project, MetPurity labels a training set via
automatic program analysis and builds a binary classifier (imple-
mented with the random forest classifier) based on the training set.
This classifier is used to predict the purity of all the other methods
(i.e., unknown ones) in the same project. Preliminary evaluation on
four open-source Java projects shows that MetPurity can provide a
list of identified pure methods with a low error rate. Applying Met-
Purity to EvoSuite can increase the number of generated assertions
for regression testing in test generation by EvoSuite.
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1 INTRODUCTION

In object-oriented programming, a method is pure if calling the
method does not change object states that exist in the pre-states
of the method calling [15]. A pure method is also called a side-
effect-free method. Similarly, a not pure method is called an impure
one. Taking Class ArrayList in Java as an example, a method size()

is pure since this method returns the number of elements in the
list without mutating the object states; another method add(Object

obj) is impure since this method modifies the state of the list via
adding an element obj.

The property that whether a method is pure or not is referred to
as method purity [15]. Method purity is widely-used in automatic
techniques of program analysis and debugging, including Java byte-
code optimization [3], model checking [16], type inference [4], test
generation [5, 12], and program repair [17]. In automatic test gener-
ation, a test case that calls a pure method cannot change the existing
object states. Thus, test generation techniques can arbitrarily insert
assertions of pure methods and monitor the current object states.
These assertions are mainly used for regression testing (i.e., detect-
ing whether a correct state is violated in regression) and killing
mutants (i.e., examining the adequacy of test cases) [5]. In Randoop,
a tool of feedback-directed random testing, a pure method (called
an observer method) is used to generate assertions to detect object
changes [12]. In EvoSuite, a tool of evolutionary testing, a pure
method with no parameters and returning primitive values is used
to generate an inspector assertion [6]. For instance, if an object
list of Class ArrayList whose list size is 10 during test generation,
an inspector assertion like assertEquals(10, list.size()) will be
generated for regression testing. This assertion is used to detect
whether a new fault is added via code changes in the future. The
test generation tools can add such assertions to test cases without
involving any errors since the method size() is pure and calling
pure methods in a test case does not mutate the state of existing
objects.

However, automatic identification of method purity is infeasi-
ble due to the complicated dependency in source code. Existing
techniques, such as JPPA [15], JPure [14], and Purano [18], are
designed to identify method purity for a small subset of methods
and skip the others. To the best of our knowledge, ReImInfer by
Huang et al. [9, 10] is the state-of-the-art approach that can be ap-
plied to large-scale programs. ReImInfer conducts context-sensitive
reference inference via static program analysis to detect pure meth-
ods. The design of ReImInfer follows the existing work and returns
an accurate (called sound in program analysis) but incomplete list
of pure methods: a subset of pure methods are detected and all the
other methods are marked as unknown [10]. To make the identified
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Figure 1: Overview of MetPurity and its application to EvoSuite.

method purity accurate, many pure methods are directly marked
as unknown without identification.

In this paper, we design and implement MetPurity, a learning-
based tool of pure method identification. MetPurity converts pure
method identification into binary classification and returns a list
of pure methods for developers. First, given the source code of a
project, the training data of pure and impure methods are auto-
matically collected via two static analysis techniques, including
ReImInfer; methods that are not in the training data are treated as
the unknown methods. Second, a binary classifier (implemented
with the random forest classifier) is built on the training data. Third,
the purity of the above unknown methods is identified with the
classifier.

We preliminarily evaluate MetPurity on four open-source Java
projects, including Joda Time and Apache Commons Math. Appli-
cation to the test generation in EvoSuite can increase by 2.38% to
30.89% newly generated assertions for regression testing. The new
assertions can improve the testability of automatic tools of test
generation.

Motivation. Existing techniques on method purity can identify
a subset of pure methods and leave the other methods as unknown
ones. In this work, MetPurity increases the number of identified
pure methods with a low error rate. Developers can check and con-
firm a small number of pure methods with the support ofMetPurity,
instead of checking all unknown methods.

This paper makes the following major contributions,

• A learning-based tool MetPurity of pure method identifica-
tion. To the best of our knowledge, this is the first predictive
tool that identifies pure methods and enhances the number
of pure methods in existing tools. The error rate of pure
methods identification is 0.00% to 12.86%. Developers can
manually check the identified pure methods by MetPurity
for further applications.
• Preliminary evaluation on enhancing assertion generation
of EvoSuite, an off-the-shelf tool of test generation. Up to
30.89% of assertions can be newly generated for regression
testing via applying MetPurity.

2 FRAMEWORK OF METPURITY

The goal of the proposed tool MetPurity is to provide a list of
identified pure methods for developers. MetPurity takes the source
code of a Java project as input and returns a list of pure methods as
output.

2.1 Overview of MetPurity

Automatically identifying all pure methods is infeasible due to
undetected dependencies in source code [10]. The proposed tool
MetPurity is a learning-based tool of identifying pure methods, i.e.,
predicting whether a method is pure or not.

Figure 1 shows the overview of our proposed toolMetPurity and
its application to EvoSuite. This tool consists of two major phases:
the building phase and the identification phase. In the building
phase, pure methods and impure methods are accurately labeled
via two techniques of static program analysis. That is, labeling data
in the building phase does not require any manual work. Then, a
binary classier (implemented with a random forest classifier [1])
is built based on the labeled data. In the identification phase, the
classifier is used to predict whether an unknown method is pure.
A list of identified pure methods is returned to developers as the
final output. Based on this output, developers can manually check
the purity of the methods in the list since the identification in
MetPurity is inaccurate (with a low false-positive rate).

The major benefit of using MetPurity is to increase the number
of identified pure methods for further application. Developers do
not need to check the purity of all methods; instead, developers can
only check methods in the list that is provided by MetPurity. We
apply MetPurity to a widely-studied test generation tool, EvoSuite.
The pure methods by MetPurity can be used to enhance the test
assertion generation in EvoSuite. Preliminary evaluation can be
found in Section 3.

Given the source code of a Java project, two techniques in Met-
Purity can accurately detect a set of pure methods (Section 2.2) and
a set of impure methods (Section 2.3). These two sets of methods
serve as the accurately labeled data and are combined as the train-
ing set in the building phase. All the other methods whose labels of
purity are unknown, are formed as the test set in the identification
phase.
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2.2 Accurate but Incomplete Collection of Pure
Methods

To build a classifier of method purity identification, MetPurity col-
lects two sets of pure methods and impure methods in the building
phase.

To the best of our knowledge, ReImInfer is a state-of-the-art
tool that can accurately collect a subset of pure methods [9, 10].
ReImInfer is a sound but incomplete approach, which uses static
program analysis to collect the known dependency among source
code. That is, all the identified methods are actually pure and the
other methods are treated as unknown methods, including pure or
impure ones. The major reason for unknown methods is due to
the undetected dependency among source code, including native
methods, polymorphism, and library without known source code.

In MetPurity, ReImInfer plays the role of labeling pure methods
in the training set. Note that identifying pure methods of a project
via ReImInfer requires the local configuration of the project. There-
fore, before running MetPurity, we locally configured the project
under analysis and keep the source code compilable.

2.3 Accurate but Incomplete Collection of

Impure Methods

To build a classifier, both pure methods and impure methods should
be provided as a training set. However, ReImInfer as well as other
existing tools cannot accurately identify impure methods. It is nec-
essary to provide a set of accurately impure methods for the clas-
sification. Since it is time-consuming to manually identify impure
methods, we followed the idea of ReImInfer and designed a sim-
ple algorithm to collect impure methods. This algorithm is also
accurate but incomplete. That is, many impure methods cannot be
identified and all identified ones are actually impure.

The algorithm of identifying of impure methods takes the set
of all methods in a project as input and returns a subset of impure
methods. The general idea of identifying impure methods consists
of three major rules:

• If a method contains at least one assignment whose left-
value is a field or the object reference of this, this method
is added to a set of impure methods X . This rule is designed
to indicate that an object is to be modified via assignments.
• If a method contains at least one assignment whose left-value
is an object parameter or its field, this method is added to a
set of impure methods Y . This rule is designed to show that
an object in a parameter is to be modified.
• If an impure method x inX is invoked by a field or the object
reference of this, the method that invoking x via calling the
field or the this is added to the set X . This rule is repeatedly
applied until there is no newly added method.

All methods that satisfy these rules, i.e., the union set of X and
Y , are collected. These methods are indeed impure since existing
objects are modified. MetPurity uses these methods as the training
data of impure methods.

2.4 Learning from Collected Pure and Impure

Methods

The general idea of MetPurity is to build a binary classifier from
collected pure and impure methods. This classifier can be used to
predict whether an unknown method is pure or not. Generally, any
binary classifier can be used in MetPurity. In our implementation,
we used the random forest classifier because of its performance
and robustness [1]. A data processing technique, Synthetic Minor-
ity Oversampling TEchnique processing (SMOTE) [2], is used to
address potential data imbalance of pure and impure methods in
the training set.

Feature extraction. To characterize one method into a numeric
vector, MetPurity extracts 103 features via static program analysis.
The static analysis inMetPurity is conducted via parsing the param-
eter list and source code of each given method. The 103 features can
be roughly divided into seven categories: statements (17 features,
e.g., the number of assignments and lines of executable code), vari-
ables (27 features, e.g., numbers of defined or used local variables
or fields), control nodes (29 features, e.g., numbers of conditions,
loops, and nested loops), invocations (8 features, e.g., numbers of
static or non-static methods), complexity (17 features, e.g., items
of the Cyclomatic complexity or the Halstead complexity), inside
classes (3 features, e.g., numbers of anonymous or inner classes),
and method signatures (3 features, e.g., numbers of annotations or
throws).

Dataset partition. The training set and the test set ofMetPurity
belong to the same project. As shown in Figure 1, the training set of
pure methods and impure methods are automatically collected with
the ReImInfer tool in Section 2.2 and the algorithm in Section 2.3.
Then all the other methods with unknown purity are treated as the
test set.

2.5 Implementation

Our tool MetPurity is implemented with Java JDK. The feature ex-
traction for classification (Section 2.4) and the algorithm of impure
method collection (Section 2.3) are implemented on top of a static
analysis tool, Spoon.1 Spoon[13] is a program analysis tool of source
code analysis and transformation for Java code. The pure method
collection (Section 2.2) is based on an off-the-shelf tool, ReImIn-
fer [9]. Machine learning techniques, such as the random forest
and the SMOTE, are implemented with Weka.2 Weka [8] is a work-
bench for machine learning algorithms in Java. The components
of MetPurity is linked with scripts. The prototype and evaluation
data are available at http://cstar.whu.edu.cn/p/metpurity/.

3 PRELIMINARY EVALUATION

3.1 Evaluation Setup

Pure methods are widely used in automatic testing and debugging.
In automatic test generation, assertions based on pure methods can-
not change existing object states. Such assertions do not interrupt
correct program states and can be used to detect potential faults.
As mentioned in Section 1, in EvoSuite [6], a pure method with
no parameters and returning primitive values is converted into an

1Spoon, http://spoon.gforge.inria.fr/.
2Weka 3.8, http://www.cs.waikato.ac.nz/ml/weka/.
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Table 1: Error rate of pure method identification in MetPurity

Project Joda Time 2.9.6 Http Client 4.1.2 Eclipse Core 3.2.0 Apache Commons Math 3.6.1
# Collected pure methods 514 184 721 1248
# Collected impure methods 241 61 357 207
# Unknown methods (i.e., the test set) 144 50 135 344
# Identified pure methods by MetPurity 128 32 70 306
# Incorrectly identified pure methods 0 4 9 2
Error rate of pure method identification 0.00% (0/128) 12.50% (4/32) 12.86% (9/70) 0.65% (2/306)

Table 2: Number of generated assertions in test cases for all classes under testing when applying MetPurity to EvoSuite

Project Joda Time Http Client Eclipse Core Apache Commons Math
# Assertions without purity analysis in EvoSuite 17803 1411 325488 152747
# New assertions by purity analysis in EvoSuite 4495 493 55635 34164
# New assertions via pure methods in the training set 1964 151 6627 23123
# New assertions via prediction by MetPurity in the test set 779 35 2454 34607
Rate of newly added assertions by MetPurity 12.30% 9.77% 2.38% 30.89%

inspector assertion. An automatically-generated assertion based on a
pure method can be directly added into test cases without changing
the current program states. The original purity analysis in EvoSuite
is intra-method static analysis, which only considers source code
inside one method [7]. This makes EvoSuite identify only a small
subset of pure methods and skip the others.

In this paper, we evaluate the proposed tool MetPurity on four
widely-used open-source Java projects, including Joda Time, Http
Client, Eclipse Core, and Apache Commons Math. We investigate
the benefit of applyingMetPurity to the off-the-shelf test generation
tool, EvoSuite.

In EvoSuite, assertions are generated based on pure methods
that contain no parameters and return primitive values. To keep
consistency, the following evaluation only shows the numbers of
pure methods without parameters and returning primitive values.

3.2 Effectiveness of Pure Method Identification

Table 1 shows the number of identified pure methods by MetPu-
rity and the error rate of identification. For instance, in Project
Apache Commons Math, the number of collected pure methods
and collected impure methods in the training set are 1248 and 207,
respectively. This leaves 344 methods with unknown purity. Af-
ter MetPurity is applied to these unknown methods, 306 methods
are identified as pure ones. Among these 306 identified methods,
304 methods are correct identification and 2 methods are incorrect
identification, i.e., 2 false positives. The error rate of pure method
identification is 2/306 = 0.65%. Among four projects under evalua-
tion, the error rate ranges from 0.00% to 12.86%.

3.3 Effectiveness of Application to EvoSuite

The test generation tool, EvoSuite [5], generates assertions to detect
potential violations in regression testing. We evaluate the results
of applying pure methods by MetPurity to EvoSuite via counting
the number of generated assertions. In general, a high number of
generated assertions indicates the strong capability of detecting
requirements violations [7, 11].

Table 2 shows the numbers of generated assertions in test cases
when applying MetPurity to EvoSuite. The first four rows are mu-
tual: only newly generated assertions are counted. We calculate
the rate of newly generated assertions by MetPurity. For example,
in Project Apache Commons Math, 23123 assertions are generated
based on pure methods in the training set of MetPurity and 34607
assertions are generated based on the identification of pure methods
in the test set; in EvoSuite, 152747 assertions and 34164 assertions
are generated with and without purity analysis, respectively. Then
the rate of newly generated assertions by MetPurity is 30.89%, i.e.,
23123+34607
152747+34164 . As shown in Table 2, the rate of newly generated asser-
tions by MetPurity is between 2.38% to 30.89%. Pure methods that
are identified by MetPurity can add new assertions to the result of
EvoSuite. This suggests that test cases with these assertions can
enhance the detection of requirements violations by EvoSuite.

Summary of evaluation. Evaluation on four projects shows
that MetPurity can newly identify 32 to 306 pure methods with 0
to 9 false-positives. Applying MetPurity to EvoSuite shows that
applying MetPurity can add 2.38% to 30.89% newly generated as-
sertions.

4 CONCLUSION

We present MetPurity, a learning-based tool of pure method identi-
fication. The training data of MetPurity are labeled via automatic
program analysis and are not manually labeled by developers. The
tool provides a list of identified pure methods with a low error rate.
MetPurity is applied to a widely-studied tool of test generation,
EvoSuite. Applying MetPurity to EvoSuite can increase by 2.38%
to 30.89% newly generated assertions for regression testing. Future
work of developing MetPurity is to further reduce the error rate of
pure method identification.
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