
 

Abstract—The Three-Index Assignment Problem (AP3) is a
famous NP-hard problem with wide applications. Since it’s
intractable, many heuristics have been proposed to obtain near
optimal solutions in reasonable time. In this paper, a new
meta-heuristic was proposed for solving the AP3. Firstly, we
introduced the conception of muscle (the union of optimal
solutions) and proved that it is intractable to obtain the muscle
under the assumption that P NP≠ . Moreover, we showed that
the whole muscle can be approximated by the union of local
optimal solutions. Therefore, the Approximate Muscle guided
Global Optimization (AMGO) is proposed to solve the AP3.
AMGO employs a global optimization strategy to search in a
search space reduced by the approximate muscle, which is
constructed by a multi-restart scheme. During the global
optimization procedure, the running time can be dramatically
saved by detecting feasible solutions and extracting poor partial
solutions. Extensive experimental results on the standard AP3
benchmark indicated that the new algorithm outperforms the
state-of–the-art heuristics in terms of solution quality. Work of
this paper not only provides a new meta-heuristic for NP-hard
problems, but shows that global optimization can provide
promising results in reasonable time, by restricting it to a fairly
reduced search space.

I. INTRODUCTION

he Three-Index Assignment Problem (AP3) is a
well-known NP-hard problem with wide applications

including scheduling capital investments, military troop
assignment, satellite coverage optimization, and production
of printed circuit boards (Pierskalla, 1967, 1968; Frieze and
Yadegar, 1981; Crama, Kolen, Oerlemans and Spieksma,
1990). Since it is intractable for NP-hard problems to obtain
optimal solutions, both exact and heuristic algorithms have
been developed for solving AP3 instances, including Balas
and Saltzman (1991), Burkard and Rudolf (1993), Crama and
Spieksma (1992), Pardalos and Pitsoulis (2000), Voss(2000),
Aiex, Resende, Pardalos and Toraldo (2005), Huang and Lim
(2006). Among these algorithms, LSGA proposed by Huang
and Lim can obtain better results than all other existing
heuristics.

As an important tool to design heuristics for NP-hard
problems, the backbone (i.e., the shared common parts of all
optimal solutions for a NP-hard problem instance) has
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received widespread attention in recent years. Schneider
(2003) proposed a multilevel reduction algorithm for the
traveling salesman problem (TSP) by using the intersection of
local optimal solutions as the approximate backbone. Zhang
and Looks (2005) presented a backbone guided LK algorithm
for the TSP. Zhang (2004), Dubois and Seymour (2001), and
Valnir (2006) gave backbone guided local search algorithms
for the SAT, respectively. Zou, Zhou, Chen, Jiang and Gu
(2005) developed the approximate backbone-guided fant
(ABFANT) for the quadratic assignment problem (QAP).

In contrast to the backbone, the muscle (the union of local
optimal solutions) was introduced in this paper. Firstly, we
proved that there is no polynomial time algorithm to obtain
the muscle of the AP3 under the assumption that P NP≠ . Its
basic idea is to map any instance of the AP3 to an instance
with a unique optimal solution. Therefore, finding the muscle
of the modified instance is equivalent to finding an optimal
solution of the original instance. Similarly, we indicated that
it is intractable to obtain a fixed fraction of the muscle as well.
Secondly, we approximated the muscle with the union of
local optimal solutions and proposed a new meta-heuristic,
the Approximate Muscle guided Global Optimization
(AMGO) for the AP3. It consists of two phases: the sampling
phase approximates the muscle by running a multi-restart
scheme for AP3; the global optimization phase exploits a
recursive procedure to find better solutions by restricting the
search in the approximate muscle. In the latter phase, the
running time can be dramatically reduced in such a way that
we detect the feasible solution and extract poor partial
solution. Experimental results on the standard AP3
benchmark indicated that the new heuristic outperforms
LSGA and GRASP with Path Relinking in terms of solution
quality, especially on those hard instances (instances of size >
18 in Balas and Saltzman Dataset).

The rest of this paper is organized as follows. Section II
first describes definitions of the AP3 and the muscle, and
computational complexity results of the muscle are given. In
Section III, we shall approximate the muscle with the union of
local optimal solutions, and propose the AMGO heuristic.
Experimental results are reported in Section IV. Finally, we
conclude this paper in Section V.

II. MUSCLE OF AP3

A. Preliminaries

In this subsection, we shall give out some useful definitions
about the AP3 and the muscle.

Definition 1. Given sets {1, 2, , }I J K n= = = � and the

cost function :c I J K +
× × → � , where ijkc represents the

cost of a triple ( , , )i j k I J K∈ × × . A feasible solution to the
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AP3 instance (denoted by 3( , , , )AP I J K c ) is defined as a set

1 1 1 2 2 2{( , , ), ( , , ), , ( , , )}n n ns i j k i j k i j k= � , where ,i i′≠

,j j′≠ k k ′≠ for any two distinct triples ( , , ),( , , )i j k i j k s′ ′ ′ ∈ .

Definition 2. Given an AP3 instance 3( , , , )AP I J K c and a

feasible solution s , let ( , , )( ) i j k s ijkc s c
∈

= � be the cost of s .

The AP3 aims to find a feasible solution s∗ with minimum

cost, i.e., ( ) min{ ( ) }c s c s s∗
= ∈ Π , where Π is the set of all

feasible solutions.
Definition 3. Given an AP3 instance 3( , , , )AP I J K c , let

1 2{ , , , }qs s s∗ ∗ ∗ ∗
Π = � be the set of all optimal solutions to

3( , , , )AP I J K c , where q∗
Π = represents the number of

optimal solutions. The muscle of 3( , , , )AP I J K c is defined

as * *
1 2( , , , ) qmuscle I J K c s s s∗

= � ��� .

It is significant to obtain the muscle ( , , , )muscle I J K c for

algorithm design. According to definition 3, if the muscle is
obtained, the search space could then be effectively reduced
by restricting the search to the muscle.

In the following part, we shall introduce some definitions
which will be used later.

Definition 4. Given an AP3 instance 3( , , , )AP I J K c , if

there exists exactly one optimal solution to the instance
3( , , , )AP I J K c , then the instance 3( , , , )AP I J K c is a unique

optimal solution instance.
Definition 5. Given an AP3 instance 3( , , , )AP I J K c , the

biased AP3 instance is defined as ˆ3( , , , )AP I J K c , where
2

ˆ 1 2in jn k
ijk ijkc c + +

= + for every ( , , )i j k I J K∈ × × . Given a

feasible solution s to ˆ3( , , , )AP I J K c , let ˆ( )c s ( , , ) ˆi j k s ijkc
∈

= �

be the cost of s .
Obviously, the biased instance is also an AP3 instance and

a feasible solution to the biased instance is also feasible to its

original instance. In fact, it only needs 3( )nΟ running time to

construct the biased instance for a given AP3 instance. In the
following part, we shall prove that the biased instance has a
unique optimal solution, which is also optimal to the original
instance.

Definition 6. Given two solutions 1 2,s s to an AP3

instance 3( , , , )AP I J K c , the distance between 1s and 2s is

defined as 1 2 1 2( , )dist s s n s s= − � .

B. Computational Complexity of Muscle

Theorem 1. Given an AP3 instance 3( , , , )AP I J K c , if

ijkc +
∈� for every ( , , )i j k I J K∈ × × , then the biased

instance ˆ3( , , , )AP I J K c is a unique optimal solution

instance.
Proof. For any two distinct solutions 1 2s s≠ to

3( , , , )AP I J K c , we only need to verify that 1ˆ( )c s 2ˆ( )c s≠ .

By definition, we have
2

11 1 ( , , )ˆ( ) ( ) 1 2in jn k
i j k sc s c s + +

∈
= +� .

When viewed as a binary string, 1( )c s will be the integer part,

and
2

1( , , ) 1 2in jn k
i j k s

+ +

∈
� will be the fractional part of 1ˆ( )c s .

Thus, the 2in jn k+ + bit will be 1 for all 1( , , )i j k s∈ .

Similarly, 2ˆ( )c s can also be viewed as a binary string.

For any two triples 1 1 1 2 2 2( , , ), ( , , )i j k i j k I J K∈ × × , unless

1 2 1 2,i i j j= = , 1 2k k= , otherwise
2 2

1 1 1 2 2 21 2 1 2i n j n k i n j n k+ + + +
≠ .

Since 1 2s s≠ , there must exist one triple ( , , )i j k∗ ∗ ∗ such that

1( , , )i j k s∗ ∗ ∗
∈ and 2( , , )i j k s∗ ∗ ∗

∉ . It implies that the
2i n j n k∗ ∗ ∗

+ + bit of
2

1( , , ) 1 2in jn k
i j k s

+ +

∈
� will be 1. However,

the same bit of
2

2( , , ) 1 2in jn k
i j k s

+ +

∈
� will be 0. Therefore, we

have
2 2

1 2( , , ) ( , , )1 2 1 2in jn k in jn k
i j k s i j k s

+ + + +

∈ ∈
� ≠� , i.e., 1ˆ( )c s 2ˆ( )c s≠ .

Thus, this theorem is proved. �
Lemma 1. Given an AP3 instance 3( , , , )AP I J K c , if

ijkc +
∈� for every ( , , )i j k I J K∈ × × , then for any two

distinct feasible solutions 1 2s s≠ , if 1 2( ) ( )c s c s< , then

1ˆ( )c s 2ˆ( )c s< .

Proof. By assumption of Lemma 1, 1 2( ) ( )c s c s< . Since

ijkc +
∈� for every ( , , )i j k I J K∈ × × , we have

2 1( ) ( ) 1c s c s− ≥ .

According to the definition of the biased instance, we have
2 2 2

1 11 1 ( , , ) ( , , )ˆ0 ( ) ( ) 1 2 1 2 2 1in jn k n n
i j k s i j k sc s c s n+ +

∈ ∈
< − =� < � = <

. Similarly, we have 2 2ˆ0 ( ) ( ) 1c s c s< − < . It implies that

2ˆ( )c s 1ˆ( )c s− 2 1 2 2ˆ( ) ( ) ( ( ) ( ))c s c s c s c s= − + − 1 1ˆ( ( ) ( ))c s c s− −

2 1( ) ( ) 1 0c s c s> − − ≥ .

Thus, this lemma is proved. �
Theorem 2. Given an AP3 instance 3( , , , )AP I J K c , if

ijkc +
∈� for every ( , , )i j k I J K∈ × × , then the unique

optimal solution to the biased instance ˆ3( , , , )AP I J K c is also

optimal to 3( , , , )AP I J K c .

Proof. By Theorem 1, there exists a unique optimal
solution (denoted by s∗ ) to the biased instance

ˆ3( , , , )AP I J K c . Obviously, s∗ is also a feasible solution to

3( , , , )AP I J K c . Thus, s∗ must be optimal to the AP3

instance 3( , , , )AP I J K c , otherwise there exists a solution s

such that ( ) ( )c s c s∗
< . However, by Lemma 1, we have

ˆ( )c s ˆ( )c s∗
< , a contradiction.

Thus, this theorem is proved. �
Theorem 3. There exists no polynomial time algorithm to

obtain the full muscle of the AP3 problem unless P NP= .
Proof. Otherwise, there must be a polynomial time

algorithm (denoted by Γ ) to obtain the muscle of the AP3. A
contradiction will be found in the following proof by
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constructing a polynomial time algorithm to obtain an
optimal solution to the AP3.

Given any arbitrary AP3 instance 3( , , , )AP I J K c , without

loss of generality, we shall assume that ijkc +
∈� for every

( , , )i j k I J K∈ × ×
1 . We can always obtain an optimal

solution to the instance 3( , , , )AP I J K c in polynomial time as

follows.
Firstly, the instance 3( , , , )AP I J K c can be transformed

into its biased instance ˆ3( , , , )AP I J K c in 3( )nΟ running

time. Secondly, since the biased instance is also a AP3
instance, its muscle can be obtained by Γ in polynomial time
(denoted by ( )Ο • ). By Theorem 1, the muscle is the unique

optimal solution (denoted by s∗ ) to ˆ3( , , , )AP I J K c . In the

mean time, by Theorem 2, s∗ is also optimal to
3( , , , )AP I J K c . Therefore, we can always solve the instance

3( , , , )AP I J K c in 3( ) ( )nΟ + Ο • running time.

However, it has been proved that no polynomial time
algorithm exists to solve a NP-hard problem unless P NP= ,
a contradiction. Thus, this theorem is proved. �

Theorem 4. There exists no polynomial time algorithm to
obtain a fixed fraction of the muscle to the AP3 problem
unless P NP= .

Proof. Otherwise, there must be a polynomial time
algorithm (denoted by Λ ) to obtain a fixed fraction of the
muscle to an AP3 instance. A contradiction will be found in
the following proof by constructing an exact algorithm of
polynomial time complexity for the AP3 problem.

Given any arbitrary AP3 instance 3( , , , )AP I J K c , without

loss of generality, we shall assume that ijkc +
∈� for every

( , , )i j k I J K∈ × × . We can always obtain an optimal

solution to the instance 3( , , , )AP I J K c in polynomial time as

follows.
Firstly, the biased instance ˆ3( , , , )AP I J K c can be

obtained in 3( )nΟ running time. By Theorem 1,

ˆ3( , , , )AP I J K c has a unique optimal solution s∗ , i.e., the

muscle. Thus, we can obtain at least one triple (denoted by

1 1 1( , , )i j k ) from s∗ (the muscle) by Λ in polynomial time

(denoted by ( )p n ). In such a way, a new biased instance

1 1 1 ˆ3( \{ }, \{ }, \{ }, )AP I i J j K k c can be constructed.

Obviously, it is also a unique optimal solution instance from
which a new triple (denoted by 2 2 2( , , )i j k ) can obtained by

Λ in polynomial time (denoted by ( 1)p n − ). Then another

biased instance 1 2 1 2 1 2 ˆ3( \{ , }, \{ , }, \{ , }, )AP I i i J j j K k k c can

be constructed.

1 If some triple costs are decimal fraction, we can simply rescale the
instance to a new instance with integer costs only, through multiplying each
triple cost by a large number. The optimal solutions to the new instance are
identical to the original one.

By such sequential 1n − calls to Λ , we can obtain an
optimal solution 1 1 1 2 2 2{( , , ), ( , , ), , ( , , )}n n ns i j k i j k i j k= � to

ˆ3( , , , )AP I J K c . By Theorem 2, this optimal solution is also

optimal to 3( , , , )AP I J K c . Therefore, we can always solve

the instance 3( , , , )AP I J K c in polynomial running time.

However, it contradicts with the fact that no polynomial
time algorithm exists to solve a NP-hard problem under the
assumption that P NP≠ . Thus, this theorem is proved. �

III. APPROXIMATE MUSCLE GUIDED GLOBAL OPTIMIZATION

ALGORITHM FOR AP3

A. Approximating the Muscle

As proven in Theorem 3 and Theorem 4, it is intractable to
obtain the muscle with any performance guarantee. In this
subsection, we shall investigate the way to approximate the
muscle.

Boese (1995) observed in the traveling salesman problem
(TSP) that a local optimal solution tends to have 80%
common edges shared with an optimal solution. Similar
phenomena were also found in the graph partitioning problem
(Merz and Freisleben, 2000), and the job shop scheduling
problem (Reeves, 1999). Such observations have led to the
“big valley” structure, which suggests that extensively many
local optimal solutions form clusters around the optimal
solutions.
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Fig. 1: 100 RLS local optimal solutions. Solution cost (vertical axis) is
plotted against the distance to the global optimal solution.
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Similar to the work of Boese, we examined the
characteristics of local optimal solutions as follows. Firstly,
100 local optimal solutions (denoted by 1 2 100, , ,s s s� )were
generated to several typical instances (bs_8_1.dat,
bs_10_1.dat, and bs_12_1.dat) from Balas and Saltzman
Dataset (Balas and Saltzman, 1991), by 100 runs of a Random
Local Search (RLS) algorithm (see Algorithm 1). RLS starts
with a randomly generated initial solution (step (1)-step (3)),
followed by a hungarian local search (step (4)- step (5))
which was proposed in (Huang and Lim, 2006) by projecting
a AP3 instance to a linear assignment problem. Secondly, we
computed the distance of each solution to the global optimal
solution (see Fig. 1). Our results show a weak relationship
between cost and distance in the AP3 problem.

Thus, we conducted a new experiment to investigate the
relationship between the muscle and the union of local
optimal solutions. As shown in Fig. 2, the union contains
almost the whole muscle. When the number of local optimal
solutions exceeds 30, the union contains exactly the whole
muscle for bs_8_1.dat, bs_10_1.dat, and bs_12_1.dat,
respectively. And Fig. 3 shows the growth trend of the union
size against the number of local optimal solutions. The union
size grows slowly along with the increase of local optimal
solutions used. When 100 local optimal solutions are used,
the union size will be nearly 11 ,18 ,20n n n for bs_8_1.dat,
bs_10_1.dat, and bs_12_1.dat, respectively.

Inspired by the relationship between the union and the
muscle, we can then approximate the muscle with the union
of local optimal solutions.

Definition 7. Given local optimal solutions 1 2, , , ks s s� to

an AP3 instance 3( , , , )AP I J K c , an approximate muscle is

defined as 1 2 1 2_ ({ , , , })k ka muscle s s s s s s=� � ��� .

B. AMGO Algorithm for AP3

According to the definition, once the muscle is obtained,
we can then search in a reduced search space by restricting the
search in the muscle. Although it’s intractable to obtain the
muscle, we have observed in the subsection above that the
whole muscle can be approximated by the union of local
optimal solutions. Moreover, the approximate muscle size is
far smaller than the whole search space. For instance, the
approximate muscle size of bs_12_1.dat is nearly 20n only,
while the total number of triples in bs_12_1.dat will be

3 144n n= . The approximate muscle is so small that a global
search can be exploited in the search procedure for obtaining
high quality solution in reasonable time. Therefore, we
proposed the Approximate Muscle guided Global
Optimization (AMGO) for the AP3 problem.

AMGO (see Algorithm 2) is a meta-heuristic which
consists of two phases: the sampling phase and the global
optimization phase.

(1) Sampling Phase

Algorithm 1: RLS for AP3
Input: AP3 instance 3( , , , )AP I J K c

Output: solution s′

Begin
(1) for 1i = to n do [ ]p i i= , [ ]q i i= ;

(2) for 1i = to n do
let j be a random integer between 1 and n ;

swap [ ]p i and [ ]p j ;

(3) for 1i = to n do
let j be a random integer between 1 and n ;

swap [ ]q i and [ ]q j ;

(4) let {( , [ ], [ ]) 1 }s i p i q i i n= ≤ ≤ ;

(5) obtain the local optimal solution s′ by applying
the hungarian local search to s ;
End
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Algorithm 2: AMGO for AP3
Input: AP3 instance 3( , , , )AP I J K c , k , heuristic Η

Output: solution s∗

Begin
// sampling phase
(1) c∗

= +∞ , s = ∅

(2) for 1i = to k do
(2.1) obtain a solution is with Η ;

(2.2) if ( )ic s c∗
< then ( )ic c s∗

= ;

(3) 1 2 1 2_ ({ , , , })k ka muscle s s s s s s=� � ��� ;

// global optimization phase
(4) for 1i = to n do [ ] , [ ]fp i false fq i false= = ;

(5) obtain s∗ with 1 2( _ ({ , , , }), ,1,0)kGO a muscle s s s s� ;

(6) return s∗ ;
End
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This phase (step (1)-step (3) in AMGO) aims to sample the
search space for constructing the approximate muscle. In the
sampling phase, local optimal solutions 1 2, , , ks s s� are

generated by a multi-restart scheme and the best solution cost
is recorded by c∗ . The approximate muscle is then
constructed as the union of 1 2, , , ks s s� . During this phase,

any existing heuristic for the AP3 problem can be
incorporated into the multi-restart scheme. In this paper, we
use RLS as the subordinate heuristic Η .

(2) Global Optimization Phase
After the approximate muscle is constructed, we can then

exploit a global optimization strategy (step (4) – step (5) in
AMGO) to a restrained search space. At the beginning of the
global optimization phase, the initial solution is set to be
empty, and all the elements in J and K of the AP3 instance

3( , , , )AP I J K c are free to be used (see step (4) in AMGO).

Thus, the Global Optimization (GO) is called to obtain the
best solution in the restrained search space.

GO (see Algorithm 3) is a recursive procedure which
constructs the solution by adding triples to it one by one. The
action of GO can be classified into two cases as follows.

In the first case, a partial solution is to be constructed, i.e.,
s contains 1i − ( ( )i n< ) disjoint triples. For every triple

( , , ) ai k j m∈ , two branch-cut actions including feasible

solution detection and poor partial solution extraction are

conducted. A feasible solution is detected by checking
whether k and j have been fixed in s . The poor partial

solutions are extracted by ensuring the cost sum ( p ikjc c+ ) of

the partial solution and the triple ( , , )i k j is less than c∗ .

After the branch-cut actions, the triple ( , , )i k j is joined into

s in order to construct a bigger partial solution. GO is then
recursively called with the new partial solution (step (2.3) in
GO). Before (After) the inner GO is called, the elements ,j k

are fixed (freed).
In the second case, a full solution is to be constructed. For

every triple ( , , ) an k j m∈ , we check whether k and j

haven’t been fixed in s and the cost sum p ikjc c+ is less than

c∗ . If so, a new best solution {( , , )}s s n j k∗
= � is completed

and the cost c∗ of the best solution is refreshed.

C. Aspects of AMGO

As a new meta-heuristic for AP3, AMGO possesses several
good aspects as follows.

(1) Flexibility
AMGO provides a framework for NP-hard problems in

which any existing heuristic can be employed. In this paper,
we just RLS as the subordinate heuristic.

(2) Simplicity
In contrast to the LSGA and GRASP with Path Relinking

algorithms for the AP3, the AMGO requires no complex data
structure for implementation. And the core code of GO is far
simpler than many other operators used in GRASP and
LSGA.

(3) Efficiency
Global search is usually a time-exhaustive approach for a

NP-hard problem solving, whereas our global search part of
AMGO is fairly efficient. Such efficiency comes not only
from the approximate muscle, which is far smaller than the
total triples of the instance, but from the branch-cut strategies
used in GO. With the actions of feasible solution detection
and poor partial solution extraction in GO, the running time
can be significantly reduced.

Compared to the original solution space, the solution space
of GO contains far less solutions. However, the GO can
surely obtain feasible solutions due to the fact that solutions

1 2, , , ks s s� are all belonging to this restrained solution space.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrated the effectiveness of
AMGO by experimental results over the AP3 benchmark
dataset. All the codes are implemented by C++ under a
Pentium IV D2.8GHz with 1G memory. In AMGO, we use
1000 local optimal solutions, in order to ensure the
approximate muscle contains as many triples from the muscle
as possible in reasonable time.

However, the computing machine in Aiex’s paper (2005) is
a SGI Challenge R10000 machine, and the computing
machine in Huang’s paper (2006) is a Pentium III 800.
Therefore, in order to compare the CPU time, a scaling

Algorithm 3: GO (Global Optimization)
Input: approximate muscle am , initial solution s , i ,

partial solution cost pc

Output: solution s∗

Begin
// now a solution is to be completed

(1) if i n= then
for every triple ( , , ) an k j m∈ do

if [ ]fp k false= and [ ]fq j false= then

if p nkjc c c∗
+ < then

(1.1) p nkjc c c∗
= + ;

(1.2) {( , , )}s s n j k∗
= � ;

// a partial solution is constructed
(2) if i n< then

for every triple ( , , ) ai k j m∈ do

if [ ]fp k false= and [ ]fq j false= then

if p ikjc c c∗
+ < then

(2.1) [ ]fp k true= , [ ]fq j true= ; // ,j k is fixed

// a bigger partial solution is constructed
(2.2) {( , , )}s s i k j= � ;

// GO is called with the new partial solution
(2.3) ( , , 1, )a p ikjGO m s i c c+ + ;

(2.4) [ ]fp k false= , [ ]fq j false= ; // ,j k is freed

End
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scheme is used according to SPEC (Standard Performance
Evaluation Corporation, www.specbench.org/osg/cpu2000/),
which indicates that Pentium IV D2.8GHz is not more 14.3
times (3.7 times) faster than SGI Challenge R10000 (Pentium
III 800) (see Appendix).

The AP3 dataset is generated by Balas and Saltzman
(1991). It includes 60 test instances with the problem size n =
4, 6, 8, � , 26. For each problem size n, five instances are
randomly generated with the integer cost coefficients ijkc

uniformly distributed in the interval [0, 100].
Tab. 1 shows the results of our experiments on this dataset.

Each row reports the average score of the five instances with
the same size.

The column “Optimal’’ shows the optimal solution
reported by Balas and Saltzman, while column “B–S” is the
result of their Variable Depth Interchange heuristic. Column

“GRASP with Path Relinking” is the result reported in Aiex’s
paper. Column “LSGA” is the result reported in Huang’s
Paper. Finally, Column “AMGO” shows our algorithm using
the RLS as the subordinate heuristic. The best results among
these algorithms are underlined in this table.

It is evident that our AMGO can provide much better
solutions than GRASP with Path Relinking. For instances
with the problem size <=22, the AMGO uses far less time
than GRASP with Path Relinking. The running time of
AMGO for instances with the problem size >22 becomes
longer due to the global search phase. And AMGO obtains
better solution in terms of quality than LSGA as well,
especially on instance with size > 18. For instances with the
problem size >=16, AMGO spends more time on the global
optimization phase.

Tab. 1: Balas and Saltzman Dataset (12*5 instances)
n Optima B-S GRASP with Path Relinking LSGA AMGO

Avg.
Cost

Avg.
Cost

Avg.
Cost

Avg. CPU time
(seconds)

Avg.
Cost

Avg.CPU time
(seconds)

Avg.
Cost

Avg.CPU time
(seconds)

R10000 PIV D2.8G PIII800 PIV D2.8G PIV D2.8G

4 42.2 43.2 - - - 42.2 0.00 0.00 42.2 0.01

6 40.2 45.4 - - - 40.2 0.01 0.003 40.2 0.03

8 23.8 33.6 - - - 23.8 0.03 0.008 23.8 0.07

10 19.0 40.8 - - - 19.0 0.37 0.1 19.0 0.12

12 15.6 24.0 15.6 74.79 >5.23 15.6 0.87 0.24 15.6 0.21

14 10.0 22.4 10.0 106.55 >7.45 10.0 1.73 0.47 10.0 0.32

16 10.0 25.0 10.2 143.89 >10.06 10.0 1.89 0.51 10.0 0.79

18 6.4 17.6 7.4 190.88 >13.35 7.2 2.95 0.80 6.8 1.77

20 4.8 27.4 6.4 246.70 >17.25 5.2 4.01 1.08 5.0 3.29

22 4.0 18.8 7.8 309.64 >21.65 5.6 4.54 1.23 4.4 8.52

24 1.8 14.0 7.4 382.45 >26.74 3.2 5.66 1.53 2.8 26.48

26 1.3 15.7 8.4 465.20 >32.53 3.6 10.78 2.91 2.4 35.69

V. CONCLUSION

In this paper, the conception of muscle was firstly
introduced as the union of optimal solutions. And we proved
that it is intractable to obtain full or part of the muscle.
Furthermore, we approximated the muscle with the union of
local optimal solutions. With the approximate muscle, the
AMGO was then proposed to solve the AP3 problem. The
new meta-heuristic applies a restrained global optimization
strategy to a fairly reduced search space, after the
approximate muscle is constructed by a multi-restart
sampling phase. Extensively experimental results on open
benchmarks indicated that the AMGO had achieved
dramatic improvement over existing heuristics.

Work of this paper provides a case study of theoretical
analysis for the muscle of NP-hard problems. Similar skills
may be applied to other NP-hard problems. Moreover, the
AMGO provides a new meta-heuristic for other NP-hard
problems. Our work also throws a light on the use of global
optimization in NP-hard problems. Global optimization used

to be so time-consuming that it is seldom used in heuristics,
whereas this paper shows that global optimization can
provide promising results in reasonable time as well, by
restricting it to a fairly reduced search space.

APPENDIX

According to Tab. 2, Pentium IV D2.8G: R10000 = (1424
/ 233) * (20.7 /8.85) = 14.2949 < 14.3; Pentium IV D2.8G:
Pentium III800= 1424 / 386 = 3.6891 < 3.7.

Tab. 2: CPU Benchmark from SPEC

Intel PIV D2.8G Intel P III800
Intel PIII

500
SGI Challenge

R1000
SPECint 95 20.7 8.85
SPECint 2000 1424 386 233
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