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Abstract—Exception handling is widely used in software devel-
opment to guarantee code robustness and system reliability. De-
velopers are expected to choose appropriate handling strategies to
ensure exceptions are handled properly without causing program
crashes or unintended behaviors. However, making such choices
is challenging especially for the novices due to lack of experience
on exceptional flow design. To assist developers in deciding how
to handle exceptions, we propose a method to automatically
recommend exception handling strategies based on program
context. This method learns practices of exception handling from
existing high-quality projects and code by well-skilled developers.
We extracted three types of program context (exceptional context,
architectural context, and functional context) as features and
applied machine learning techniques to recommend an optimized
strategy of exception handling. We conducted the evaluation on
10 open source Java projects. Experimental results show that our
approach reaches high prediction accuracy in choosing exception
handling strategies.1

Index Terms—Exception Handling; Machine Learning; Rec-
ommendation

I. INTRODUCTION

Exception handling is an effective way to enhance code
robustness and program reliability [1]. Most modern pro-
gramming languages (e.g., C++, C#, Java, Python) have a
built-in exception handling mechanism to guide (sometimes
force) developers to consider exceptional paths of the program,
thus reduces the probability of program crashes, and provides
necessary information (e.g., stacktraces) for troubleshooting
[2].

When exceptions are raised at some program locations,
developers need to decide how to handle them, i.e., to make
sure exceptions are propagated, logged or re-wrapped correctly
and finally handled at a right place [3]. These decisions are
crucial to program quality. The study by Marinescu et al.
[4] shows that classes with an improper manner of exception
handling might result in a higher probability of exhibiting
defects than classes with an proper manner. An empirical study
of Coelho et al. [5] also shows that low-quality exception
handling can induce many errors to the source code.

However, handling exceptions properly is not an easy job.
Developers have to make a series of decisions during exception
handling: (1) should the exception be caught at the current
method or be thrown to the caller method? (2) If we catch the
exception, should we handle it (e.g., recover the program state,
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or release the resources) right here or not? (3) If we don’t
handle it, should we re-throw the exception or just simply
ignore it? (4) If we re-throw the exception, should we wrap
the error message into a new exception, or just throw it as it
is?

To make these decisions, developers need to know where is
the right place to solve the exception, and where to log enough
yet precise error information to assist troubleshooting. At the
same time, developers should ensure that these decisions do
not introduce further bugs, or hurt the understandability and
readability of the program. Most time, balancing all these
factors heavily depends on the developer’s experience, and
there are no formal regulations or programming instructions
that can be easily followed [6].

Therefore, for many developers, handling exceptions is an
intractable issue. Empirical studies [7], [8] show that even the
most experienced developers can make mistakes in dealing
with exceptions, just like the novices. Such situations are quite
common that developers either misuse the exception handling
features or just neglect them, which leads to inefficient pro-
gramming. And moreover, improper exception handling code
can inadvertently increase the risk of program error, because
they are the least understood and tested code in the software
system. A study by Sawadpong et al. [9] shows that the defect
density of exception handling constructs is approximately
three times higher than overall.

To help developers deal with exceptions more effectively,
we propose an approach named EH-Recommender, which can
recommend the exception handling strategies (THROW, HAN-
DLE, LOG&IGNORE, WRAP&RETHROW) automatically
by learning from existing good exception handling practices.

EH-Recommender approach firstly extracts exception han-
dling code fragments from well-known high quality open
source projects, eliminates noise data, and then automatically
identifies and labels the exception handling strategy for each
code fragment.

After that, the approach extracts a list of features of these
code fragments for training. These features try to cover
the program contexts which might influence the exception
handling decisions, including the exceptional context which
represents the cause of the error, the architectural context
which indicates the logical layer of current method, and the
functional context which represents the functionality of code
fragments.



Fig. 1. Decision Process and Exception Handling Strategies

Then the machine learning techniques (e.g., SVM, Random
Forest, or CNN) are used to train the labeled and featured
exception handling data. As a result, a model is learned, which
can be used to recommend appropriate exception handling
strategies for new code fragments with diverse program con-
texts.

We conduct a set of experiments on 10 high quality open
source Java projects, which have more than 90,000 exception-
handling code fragments. The result shows that our method
gains high precision in recommending the exception handling
strategies. It shows a good prospect of application in improv-
ing development efficiency as well as the quality of exception
handling code.

The structure of this paper is organized as follows. Section
II introduces the motivation of this work. Section III describes
the detailed approach of our method. Section IV reports the
experiment we have done and the evaluation results. We
discuss the limitations in Section V and the related works in
Section VI. In Section VII we conclude this paper.

II. MOTIVATION

A. Exception Handling Strategies

In this paper, exception handling strategies refer to the
manners to handle exceptions based on specific program
context. Fig. 1 illustrates the common decision-making process
of exception handling, which produces four typical decisions:
THROW, HANDLE, LOG&IGNORE, WRAP&RETHROW.
Therefore, we divide the exception handling strategies into
four types as well in this paper accordingly (as shown in Table
I).

As shown in Fig. 1, when an exception is triggered by
a method invocation, developers are expected to find an
appropriate way to handle it. The first question to consider
is, whether we should catch this exception or not? If the
code does not catch the triggered exception, then we define
such an exception handling strategy as THROW. This is the
most common exception handling manner. According to our
statistics on ten target open source projects, the ratio of directly
throwing exception to catching exception is about 7:3.

If we decide to catch the exception, we should consider that
how should we deal with the exception inside the catch block.
Thus, the second decision that we need to make is: whether
the exceptional situation should be handled (e.g., recover the
program state, or release resources) in current catch block? If
the answer is yes, we identify this kind of exception handling
strategy as HANDLE.

If we catch the exception but do not handle it, we need
to make a further decision: whether we need to re-throw
the exception? If yes, we should wrap the original exception
information as a new exception and re-throw it. The wrapped
exception contains additional error information from the cur-
rent method besides the information of the original excep-
tions. We identify this kind of exception handling strategy
as WRAP&RETHROW. An example of WRAP&RETHROW
can be like this: a database access method throws an ex-
ception named DataAccessException, and an order manage-
ment method catches this exception, inside the catch block
the exception object was wrapped into a new exception
named DublicateOrderException and to be thrown to its caller
method. Directly re-throw the original exception is a typical
anti-pattern of exception handling (see Section III-B), so it is
not a valid strategy in this paper.

If an exception is caused by a tolerable error, and we decide
not to handle it or re-throw it, we can simply ignore it without
further operations more than log the error information. We
identify this kind of exception handling strategy as LOG&IG-
NORE. That’s also reasonable, because for some types of
exceptions or exceptions under specific context, ignoring them
has little impact on the system running. For example, when
we import a set of data, but some records have errors, we do
not need to stop the import process immediately. Instead, we
simply log the error records and continue the import process.

These four strategies are high-level decisions on handle
exceptions. After choosing a strategy, developers need further
finer-grained decision-making to handle exceptions, such as
which program state should be reset? Or which information
should be recorded into logs? These finer-grained decisions
are not taken into consideration in this paper.

B. Why We Need Multiple Exception Handling Strategies?

Exceptions are ubiquitous in software system, and the root
causes of exceptions are various. Accordingly, exceptions
triggered by different reasons and different program context
should be handled with different strategies. For example,
exceptions caused by programming errors should be logged
to facilitate debugging; exceptions caused by invalid input
from a client method should be thrown to the caller method;
exceptions related to resources and global states should be
handled by recovering and cleaning-up.

Considering the diversity of exceptions, it is not reasonable
to throw all exceptions to the caller method. If the excep-
tion, which is intended to be handled, is not handled timely
and properly, the program might occur resource leaks, or
inconsistent states, and leads to improper program behaviors
or system crashes. On the other hand, it is not feasible to



TABLE I
STRATEGIES OF EXCEPTION HANDLING

Strategy Description Examples from open source projects
THROW Throw an exception directly without

catching it.
public String readFile (String path) throws IOException{
. . . }

HANDLE Catch the exception and handle it, e.g.,
recover the program from exceptional
paths, or release resources etc.

catch (InterruptedException e) {
executor.shutdownNow();
Thread.currentThread().interrupt(); }

LOG&IGNORE Catch exceptions and record the error
information for troubleshooting.

catch (SocketException e) {
log.warn("Error while setting soTimeout to 60000"); }

WRAP&RETHROW Catch exceptions and wrap it as a new
exception with additional information.

catch (IOException e) {
throw new IllegalStateException("Unable to scan file", e); }

catch and handle every exception either. If an exception,
which is intended to notify the error to the client method,
is swallowed immediately, the client method may get an
incorrect result rather than an error notification. These facts
make troubleshooting around exception handling extremely
difficult.

Thus, developers must use multiple handling strategies to
cope with exceptions according to the program context.

C. Why the Exception Handling Decision Is Not Easy?

Except for the diversity of exceptions, we further explore
the reasons that preventing developers from making proper
exception handling decisions. We list 4 major reasons as
follows:

• In order to handle exception properly, developers are
expected to analyze the program context, and clearly
understand the effect of different handling strategies on
the maintainability, understandability, and performance of
the program. This is a difficult work for novices who have
little experience of design.

• A software system typically contains multiple logical
layers or several sub-modules, and it is common that the
overall exception flow should be carefully designed to
handle exceptions [10]. Therefore, the holistic knowledge
of the system structure is necessary. However, most time,
the design of exception flow is lacked or not well docu-
mented. In an empirical study [11], 61% of respondents
said that documenting exception handling is not taken
into consideration seriously during the design phase.

• In addition, the lack of rigorous rules or context-specific
instructions [6] (which is also hard to formulate such reg-
ulations) makes it confusing for developers to choose ap-
propriate exception handling strategies. Empirical study
shows [11], only 27% of respondents claimed that the
policies and standards for implementing exception han-
dling were part of their organizational culture.

• In many companies, the priority of dealing with exception
handling is generally inferior to the implementation of
functions. As a result, when the scale of the software
system expands, these poor exception handling code will
cause many strange bugs that are hard to fix [7].

In a word, exception handling heavily depends on the ex-
perience of developers, but the experience is hard or almost
impossible to be documented. This is a main problem blocking

developer to handle exception properly. To solve this problem,
we propose an approach to learn the experience of developers
from high-quality projects via training a machine learning
model. This approach can help developers make better de-
cisions of exception handling strategies.

III. APPROACH

We propose an approach, named EH-Recommender, to
leverage the existing exception handling experience by learn-
ing good exception handling practices from high-quality
projects.

A. The Workflow of EH-Recommender

Fig.2 illustrates the workflow of EH-Recommender ap-
proach, which has two stages: training and recommending.
The training stage is to construct the classification model while
the recommending stage is to exploit the model to determine
which exception handling strategies are appropriate to handle
exceptions raised from new code instances.

Sample collection : The first step of the workflow is to
obtain all the exception handling code fragments from massive
source code. In this paper, we focus on checked exceptions,
i.e., the exceptions which must be handled explicitly in the
program. Because unchecked exceptions (such as errors, or
RuntimeExceptions in Java language) are often caused by
unrecoverable fault, and they are discouraged to be handled
explicit during programming. We select out all code instances
that contain exception handling with their additional contex-
tual information, including the name and comment of their
packages, classes and methods.

Labeling: In the second step, each code fragment is iden-
tified and labeled with one of the exception handling strategies
(THROW, HANDLE, LOG&IGNORE, WRAP&RETHROW)
by statically analyzing the code fragments and the method
declaration. In order to get high-quality training data, we
need to filter out the noises—the exception handling code
conforming to well accepted exception handling anti-patterns.

Feature extraction: In this step, the contextual features
are extracted from exception handling instances. The features
represent three types of contexts that influence the exception
handling decision-making: (1) exceptional context, which in-
dicates the cause of the error, including the exception type, the
parent exception classes and its comments; (2) Architectural
context, which represents the logical layer of current method,



Fig. 2. The workflow of EH-Recommender approach

including the names of the package and classes. (3) Functional
context, which represents the functionality of the current code
fragments, including the API sequences of code fragments, the
name and comment of the current method.

Feature selection: The features extracted from code frag-
ments including the comments of exception and method. This
might lead to too many features. For example, the number
of features extracted from source code of Hadoop, Hive and
HBase exceed 10,000, even if we set the threshold of word
frequency to 5. Too many features will cost large amount
of time during the model training. Besides, a large part of
these features contribute almost nothing in decision-making
of exception handling. To solve this issue, we adopt a well-
known feature selection method, the Information Gain [12],
to eliminate most of irrelevant features. For each sample, we
set different information gain to reduce the features to around
250-350. By this way we achieve the best balance of prediction
accuracy and training efficiency.

Model training: After obtaining the program context fea-
tures, we transform these features into corresponding feature
vectors, which are divided into the training set and the test
sets. For the imbalance nature of different exception handling
strategies in source code, we adopted a well-known SMOTE
[13] algorithm to address this issue. After all the above
processes, we adopt a classification algorithm, such as SVM,
Naive Bayes, Random Forest and CNN (Convolution Neural
Network), to learn the data and construct the classification
model.

Get recommendation: At the stage of recommendation,
the trained classification model is utilized to recommend ex-
ception handling strategies based on the program context. The
target code fragments along with their context are transformed
into feature vectors as the same way as the training stage. Then
the featured data are input into the classification model, and
the model will tell which exception handling strategy is the
most appropriate one.

B. Anti-patterns and Noise Data

The quality of training data is crucial to machine learning
techniques to get an optimized classification model. However,
empirical studies [7] shows that even the most experienced
developers can make mistakes in dealing with exceptions.
These improper handling code are recognized as noise data
which should be filtered out from the training set.

We recognize improper exception handling code according
to well-accepted exception handling anti-patterns [7], [14], [8].
In our experiment, we found there are 5 anti-patterns occur
frequently in projects, as shown in Table II.

(1) Catching Generic Exceptions. Instead of catching spe-
cific exceptions, developers use a single catch block to collect
all exceptions. As a result, it may be difficult to determine
why the exception was thrown.

(2) Ignoring exceptions. The empty blocks defeat the pur-
pose of the exception handling mechanism for it prevents
programs from recovering from exceptional execution paths.

(3) Logging and returning null. Developers return null
after a log statement in the catch block. This case is useless
to handle the exceptions in programs. In the meanwhile,
program may run into unintended states. Besides, it will make
troubleshooting more difficult.

(4) Catch unchecked exception. Unchecked exception errors
are caused by programming errors. However, if we check the
proper condition, it can be avoided. Therefore, this kind of
exception should not be caught.

(5) Logging and re-throwing. It is not encouraged to catch
and throw the original exception in catch block. If you catch
the exception but do nothing, this code block is useless. Some
developers prefer logging the error and then throwing it. It is
also a bad practice of exception handling, because the same
exception may produce multiple log records.

Besides the instances conforming to anti-patterns, we also
filter out a part of exception handling instances which choosing
the wrong handling strategies. We adopt an advanced K-
NN algorithm to detect such noise data. Traditional K-NN
algorithm detect noise by judging the number of other kinds



TABLE II
ANTI-PATTERNS AGAINST EXCEPTION HANDLING

Anti-pattern example
Catching Generic
Exceptions[7] catch ( Throwable e) { . . . }

Ignoring exceptions[7] catch ( IOException e) {
//empty block }

Logging and returning
null[14] catch ( IOException e) {

log.error(“error”);
return null; }

Catching unchecked
exception[7] catch ( ArithmeticException e) {

... }
Logging and
re-throwing[8] catch ( IOException e) {

log.error(“error”);
throw e;}

Fig. 3. An example of features extracted from a HBase code fragment

of data which are most closely neighboring the target data.
The advancement in our method is that we take the distances
between the target code instance and its 5 nearest neighbors’
(5-NN) as the weight when judging whether the target data is
noise data. This kind of method can avoid the negative affects
resulted from unbalance of sample number in each category
to some extent.

C. Program Context and Feature Extraction

Figuring out what factors in the program context dominate
the choice of exception handling strategy is critical to our
research. The features selected can strongly influence the

efficiency of model training and the accuracy of the exception
handling strategies recommendation.

The exception handling decision-making largely depends
on the program context of the exceptional code. We need
to ensure that the extracted features have direct or indirect
relationship with the reason why develops choose a specific
strategy. Based on the above considerations, we construct a
feature set coming from three kinds of program context: ex-
ceptional context, architectural context and functional context.

As shown in Fig.3, a code fragment raises an InvalidPro-
tocolBufferException exception in method parseFrom of class
RegionTransition. The features extracted are divided into three
groups to represent three types of context.

(1) Exceptional context is the context of the exception itself.
In order to properly handling an exception, developers need to
analyze what type of error cause this exception. Similar errors
are always handled in similar manners. Such information
always hides in the exception type, name and comments.
Therefore, the features of exceptional context include three
parts: (A) The exception type, including the class name and
its super classes; (B) The exception name, including a list of
words by splitting the exception name; (C) The exception com-
ments, including a list of words by tokenizing the exception
comments.

(2) Architectural context is the context indicating the logical
level where current code lies, and the source method of the
exception. Developers analyze the logical layer based on the
package name and class name. In order to get generic features
for matching similar logical layer, the class name and package
name are split into a set of words, which can be represented
into feature vectors by word embedding.

Exceptional method invocation refers to the statement that
may trigger an exception, which indicates the source method
of exception in the call stack. This feature tells if the exception
comes from a system API, a well-known third-party library,
or an user-defined method.

(3) Functional context is the context representing the func-
tionality of the code fragment. Different functionality might
have different exception handling strategies. Some functional
tasks can tolerate errors while others not.

The functional context comes from the API sequence, name
and comment of the current method. The method name is
split and the comments are tokenized into a set of words, and
the API sequence is a list of API invoked in current method.
The method name and comment tell what job is done by this
method, and the API sequence tells how this method doing
the job. These two features represent the functionality of the
code fragment.

For the textual features, we pre-process them by stemming,
stop words removing, tokenization, TF-IDF weighting tech-
nique [15], [16], [17], and convert text to vectors through word
embedding techniques.

Fig.3 shows an example of the context features we ex-
tracted from an exception handling code instance. It is from
HBase source code, the file path of this code snippet is:
“org.apache.hadoop.hbase.RegionTransition.java”.



During traversing the source code, we find that invoking
the method “mergeFrom” might trigger InvalidProtocolBuffer-
Exception, so we analyze its containing method “parseFrom”
and find this exception is caught and re-thrown as a new
DeserializationException. So, we label this exception instance
as WRAP&RETHROW.

IV. EVALUATION

A. Corpus

TABLE III
THE CORPUS OF OUR EXPERIMENTS

Projects Code
Fragments

THROW LOG&
IGNORE

HAN-
DLE

WRAP&
RETHROW

Eclipse
Che

7603 5915
(77.8%)

612
(8.0%)

263
(3.4%)

813
(10.7%)

Consulo
IDE

5784 3546
(61.3%)

992
(17.2%)

515
(8.9%)

731
(12.6%)

Directory
Server

3843 2589
(67.4%)

379
(9.8%)

294
(7.6%)

581
(15.1%)

Hadoop 41512 31433
(75.7%)

3003
(7.3%)

3010
(7.3%)

4066
(9.8%)

Hama 534 428
(80.1%)

44
(8.2%)

13
(2.4%)

39
(7.3%)

HBase 11348 8499
(74.9%)

736
(6.5%)

714
(6.3%)

1399
(12.3%)

Hive 13215 9265
(70.1%)

750
(5.7%)

545
(4.12%)

2655
(20.1%)

Tomcat 3966 2647
(66.7%)

539
(13.6%)

421
(10.6%)

359
(9.1%)

Activiti 329 66
(20.1%)

69
(20.9%)

27
(8.2%)

167
(50.7%)

Zeppelin 3350 2455
(73.3%)

544
(16.2%)

82
(2.4%)

269
(8.0%)

All exception handling instances are collected from 10
rigorously selected open source Java projects, and we conduct
an experiment to evaluate our approach. Due to the lack of
“ground truth” on what is optimal exception handling, while
the recommendation quality still needs to guaranteed, our
selection of experimental projects strictly in accordance with
the following basic principles: 1) The development cycle of the
target projects is long enough to reach high reliability; 2) The
capabilities of the development team have been recognized
by the industry; 3) The target open source software system is
widely used in the production environment, and the code qual-
ity is widely praised. The projects we chose as experimental
data sets are shown in Table III.

According to these criteria, 10 projects are selected from
open source community.

• Eclipse Che: The next generation IDE and developer
workspace server. It contains 780K lines of code and
12635 exception handling instances.

• Consulo IDE: Cross-platform IDE based on IntelliJ. It
contains 1.32M lines of code and 9702 exception han-
dling instances.

• Directory Server: Apache LDAP directory server. It con-
tains 440K lines of code and 8273 exception handling
instances.

• Hadoop: Distributed System Infrastructure. It contains
2.7M lines of code and 88149 exception handling in-
stances.

• Hama: A framework for scientific computation. It con-
tains 54.7K lines of code and 761 exception handling
instances.

• HBase: A high-reliability distributed storage system. It
contains 784K lines of code and 23566 exception han-
dling instances.

• Hive: A data warehouse tool for statistical analysis.
It contains 1.63M lines of code and 52613 exception
handling instances.

• Tomcat: A commonly used lightweight web application
server. It contains 1.57M lines of code and 6874 excep-
tion handling instances.

• Activiti: A Business Process Management (BPM) and
workflow system. It contains 324K lines of code and 329
exception handling instances.

• Zeppelin: A web-based notebook that enables interactive
data analytics. It contains 152K lines of code and 3350
exception handling instances.

B. Metrics
We evaluate EH-Recommender using a metric macro-f1,

due to the recommendation of exception handling strategies
is a multi-classification prediction problem. A macro-f1 score
ranges from 0 to 1, it can strengthen the effect of small sample
classes on overall accuracy, which exactly applies to our need,
it is calculated as follows:

Macro-P =
1

n

n∑
i=1

Pi (1)

Macro-R =
1

n

n∑
i=1

Ri (2)

Macro-F1 =
2×Macro-P ×Macro-R
Macro-P +Macro-R

(3)

Corresponding to our classification scenario, n takes a value
of 4 since we classify the exception handling strategies into 4
classes. The calculation of Macro-F1 takes N-classification
processing as n times two-classification, it calculates the
Precision and Recall of each class under two-classifications
respectively and perform an arithmetic average of them to
obtain the macro average precision score Macro-P and the
macro average recall score Macro-R. Finally, the macro-f1
score Macro-F1 is obtained by Formula 3.

The macro-f1 score weights equally all the classes, regard-
less the amount of data instances. Therefore, it can avoid the
impact of unbalanced data on the predicted results. Take the
sample of Hive for example, the total number of data instances
reaches 13,215 while the number of handled exceptions is only
545 (4.12%), and the second least instances of Log&Ignore are
750 (5.7%). In the situation all instances with the label Handle
and Log&Ignore are wrong recommended, the accuracy can
achieve 90.18% (assume other two classes are all correctly
recommended), but its Macro-F1 is as low as 0.476.



C. Experiment
Preprocessing : The source code of most projects are

obtained from open source repository GitHub. We employ
eclipse JDT to analyze the Java code and extract the code
instances related to exception handling, and the program
context features are obtained from the AST (Abstract Syntax
Tree) and the Java Model. During analyzing the collected data
instances, we find a certain number of duplicate instances.
We checked the source code of these instances and find these
duplicate instances are caused by invoking the same method
(which trigger exceptions) more than one time. We removed
these duplicated instances before we training the models [18].
After obtaining these original samples, we conduct the feature
selection and noise data removal process using Python with
some third-party libraries, like NumPy [19].

training set and test set: To simulate the real scenario
when we apply the EH-Recommender in real programming
practice, i.e., the EH-Recommender should learn exception
handling practices from high-quality projects and existing
high-quality code of the developing project, we divide the
exception handling instances in each project into training set
and test set by the ratio of 8:2. All the training set of these
projects are mixed together and an integrated training set,
which are used to train the prediction model. After the training,
we use the trained model to evaluate the test set of each project
and calculate the metrics of each project.

Training: We train and evaluate the traditional machine
learning models (including Naive Bayes, Decision Tree(J48),
Random Forest) with the data mining software WEKA [20].
Using WEKA can easily compare the effectiveness of different
machine learning models.

The CNN model is trained and evaluated based on Ten-
sorFlow [21]. The model contains 3 layers including 1 con-
volution layer and 2 fully-connected layers. Our vocabulary
size is 5000, and we define the dimension of word vector
to be 64. Based on the word indices, we can obtain the
corresponding embedding vector of each single word. Then,
the vectorized exception handling instances can be loaded into
the convolution layer. The convolution layer has 256 filters,
with the kernel width setting to 7, and followed by a max
pooling layer. The first fully connected layer contains 128
hidden units with the dropout setting to 50% keep probability,
and using the ReLu activation function. The second fully
connected layer is used for classification task, it has 4 hidden
units and uses the Softmax activation. During training, the
model is trained for 30 epochs, and in each epoch we apply
all of the training set to train our model in batches, each batch
includes 64 samples. To evaluate the performance, we output
the loss and accuracy every 100 batches and write into tensor
board scalar every 10 batches. To reduce the loss, we use the
Adagrad Optimizer in our method.

The metric baselines: To evaluate our prediction model,
we adopt two models as experiment baselines. These two
models simulate the scenario where the programmers with no
development experience dealt with exceptions and calculate
their macro-f1 scores for comparison.

1) We assume the probability is equal that each data instance
to be randomly predicted into one of the 4 strategies, in which
case the Macro-F1 value is 0.28.

2) We assume that all exception instances are directly
thrown from the method signature, based on the observation
that in the 10 target projects, the instance ratio of throw ex-
ceptions to catch exceptions (including HANDLE, LOG&IG-
NORE and WRAP&RETHROW three classes) reaches av-
eragely 7:3, which indicate that the exceptions triggers by
method invocations are more likely to be thrown than caught.
In this case, the Macro-F1 value is 0.18.

Experiment result: Comparing with the above two base-
lines, the promising result of EH-Recommender indicates its
high effectiveness and availability in practical development,
where the Macro-F1 value of each test set ranging from
0.718 to 0.967. And the specific result (of CNN model) of
each exception handling strategy is shown in Fig. 4. The values
shown in Fig. 4 are the F1-score of each class, which consider
both the Precision and Recall of the classification. Fig. 4
shows, the EH-Recommender reaches a high-level accuracy
in every class of each data set. Generally, the F1-score of
category THROW is the best of them all, it is as expected
because the instance number of this class far exceeds the
others. Besides, the lower accuracy of recommending other
strategies is caused by some objective factors, the field study
of Cabral et al. [22] on Java and .Net projects points out
that different projects significantly differ in the subsequent
processing steps after catching exceptions. Since the projects
used in our experiment have a large variety in terms of project
type and scale, the results in Fig. 4 are still very promising.

We also notice that in the data sets of Hadoop, HBase and
Hive, the proportion of each class is nearly the same, and the
distribution of the prediction effects of these projects are also
similar; the similarity of the same classification effect distri-
bution also appears in the data sets of Che and Consulo. This
phenomenon leads us to think about whether the source code
with the same project type (or have potential relation) have
similar preference in choosing exception handling strategies.

The comparison of CNN model with other machine learning
models is posted in Table IV. The predictive accuracy of these
models in Table IV is represented by the macro-f1 score.
Between the machine learning models, the lowest accuracy
appears in Naive Bayes model, it bases on the probability
theory, a possible explanation of its low accuracy is that there
exists a certain correlation between context features, which is
not suitable to be handled with Naive Bayes. SVM can achieve
excellent accuracy in small sample classification, however,
because of our training set, the accuracy of SVM is lower
than that of Decision Tree. The predictive accuracy of other
three machine learning models is too large, the accuracy of
SVM is not satisfying enough, and it is also the most time-
consuming model. Decision Tree and Random Forest have
similar predictive accuracy, but they still can not compete
with the CNN classification model, whose Macro-F1 value
are averagely 0.810, it is a very promising result in multiple
classification problem.



TABLE IV
THE MACRO-F1 SCORE OF DIFFERENT CLASSIFICATION ALGORITHMS

Models Eclipse
Che

Consulo
IDE

Direc-
tory
server

Hadoop Hama HBase Hive Tomcat Activiti Zeppelin

Naive Bayes 0.304 0.210 0.471 0.157 0.266 0.165 0.252 0.282 0.393 0.401
SVM 0.549 0.507 0.735 0.511 0.378 0.579 0.687 0.663 0.420 0.637
Decision Tree 0.672 0.655 0.863 0.781 0.438 0.757 0.719 0.697 0.509 0.697
Random Forest 0.691 0.705 0.873 0.806 0.447 0.768 0.738 0.701 0.553 0.736
CNN 0.730 0.718 0.88 0.838 0.968 0.813 0.825 0.780 0.740 0.817

Fig. 4. The CNN result of EH-Recommender approach

V. THREATS TO VALIDITY

In this section, we present four major threats to the validity
of our work.

(1) The code quality of corpus. Our approach tries to
learn the good exception handling practices from high-quality
projects and code of well-skilled programmers. However, there
is no absolute standard to evaluate the quality of the code. At
the same time, the experience of exception handling may be
threatened by the limited diversity of projects. To mitigate
this threat, we tested 10 projects with more than 90,000 data
instances. The type and scale vary a lot between our selected
projects, also we have strict restrictions on the quality of
projects. Most of the projects we eventually chose were top
projects under Apache. These projects have received attention
and recognition from developers all over the world and have
been widely used. In addition, the results of noise detection can
also prove the effectiveness of our classification strategy and
the high-quality of the selected code from another perspective.
In the future work, we can further improve the application
scenarios of our methods based on more projects, which can
further reduce the threat of diversity.

(2) The features of program context. The selection of
features are based on the program context which influences the
exception handling. There are no commonly accepted rules to
tell how much context contributes to the exception handling
decisions. The features in this paper cover the exceptional
context, which represents the type and the cause of the error,
the architectural context, which represents the logical layer
and the source exceptional method, and the functional context,
which represents the functionality of the code. These contexts
are closely related to the exception handling decision, but can

not cover all the information related to exception handling
decision-making.

(3) The generality of features. Most time, the exception
type, package name, method name and APIs are all program
specific. We need to generalize them to alleviate the over-
fitting problem. Therefore, we introduce the comments of these
exceptions and methods into features, and also split method
names into words, and adopt the word embedding technique
to represent the general semantics of such context. In fact, to
some extent, the features of the logical layer are still not so
generic, which makes cross-project recommendation hard to
get high precision. The more general features of the logical
layer need high-level design information, which implicitly
exists in the code, but is difficult to extract and represent.
This is our next important work in the future.

(4) Data imbalance of different strategies. The number of
code fragments of different strategies are quite unbalanced.
The strategy THROW has most of the data, because an ex-
ception always goes through several methods before reaching
a place to handle it. We under-sample the data of this category
by removing some code fragments which have similar features.
And also, we adopt the well-known SMOTE oversampling
technique to generate more samples for other categories if
they have very few samples.

As far as we know, this paper is the first work on ex-
ception handling decision-making based on machine learning.
Therefore, it is still far from being a mature and practicable
approach. Some limitations of this work are as follows:

(1) Projects always differ significantly in the subsequent
processing after catching an exception, this has been proved by
other studies [22]. Therefore, cross-project recommendation
is still a problem. One way to improve predictive accuracy of



catching exceptions is to learn from more diverse projects, and
mining their project types and relevance as feature dimensions.
Also, we need more generic features for the architectural
context, to enable better cross-project feature matching.

(2) Currently, our work mainly focuses on checked ex-
ceptions. The RuntimeException and its sub-classes appear
frequently in practical development as well as checked excep-
tions. These exceptions are not caught or thrown explicitly,
therefore observing and mining the rules of dealing with Run-
timeException usually involve implicit exception flow analysis
of related code. So, recommending the RuntimeException
handling strategies will be more challenging.

(3) In this paper, we provide 4 generic exception handling
strategies for developers to assist them in handling exceptions.
This classification approach to exception handling strategies is
sufficient for most development scenarios, but it can still be
better. For example, in the case of throwing exceptions directly,
it can further analyze where the exception is finally handled,
knowing this can largely prompt our recommendation; in
the case of catching exceptions, there exists some special
exception handling modes, however these data instances are
rare so it is difficulty to learning from these exception han-
dling patterns. We can try to capture these specific exception
handling patterns with the emerging transfer learning and few-
shot learning techniques.

VI. RELATED WORKS

Exception handling is an active research area for many
years. Considerable empirical studies [23], [11], [24], [6], [4],
[25] and user surveys [7], [26], [27], [8] have been conducted
to analyze the exception handling practice among different
programming languages, these studies reveal the developer’s
exception handling behavior and it inspired our work largely.
Many researchers studied the relationship between exception
handling code and software robustness [28], Osman et al. [29]
and Cacho et al. [25] evaluated how changes in exceptional
code can impact system robustness. Marinescu et al. [4]
suggest that classes using exceptions are more complex than
those not using exceptions. Moreover, classes that handle
exceptions in an improper manner show a higher probability of
exhibiting defects than classes which handle them properly. In
the meantime, experiments [9] have proven that the exception
handling code itself may also cause errors, such errors were
called EH-bugs (exception handling bugs), and the exception
handling defect density of exception handling constructs is
approximately three times higher than overall defect density.

The inherent complexity in exception handling is one of the
reasons why many developers end up oversimplifying [23], [3],
[30] or even neglecting exception handling [31], [8] in their
programs. Therefore, some works paid attention to analyzing
the exception handling code, and hoped to aid developers in
understanding the global exceptions flows of the program [24],
[32], [33], [34].

Recent years, some new approaches are presented, to mine
or learn exception handling patterns from code repositories,

or to recommend exception handling code based on context
similarity.

Thummalapenta et al. [11] develop a novel approach that
mines exception-handling rules as sequence association rules
of the form “(FC1

c ...FCn
c )

∧
FCa⇒(FC1

e ...FCm
e ), which is

required to characterize common exception-handling rules.
They present a technique for learning specialized instances
of specifications for exceptional code paths, and directly
mine sequential patterns by using closed frequent sequential
pattern mining. However, these exception handling patterns
are based on the existing exception handling code, and how
the exception is ultimately handled this processing model is
based on the existing exception handling code to analyze
how the exceptions are eventually handled. But our work is
to propose the recommendation of exception handling during
development.

Rahman et al. [35] and Barbosa et al. [36] proposed a
method based on code context similarity, which can search for
a similar exception handling code example in the open source
code repository. However, this method focuses mainly on the
subsequent processing after catching an exception, it ignores
the decision that whether the exception should be caught
or be thrown directly. Meanwhile, this method is evaluated
on a small data set, which cannot provide the developer a
straightforward advice for handling exceptions. Our approach
is to take advantage of the existing good exception handling
experience to provide developers with a direct and operational
handling recommendation. And based on the classification
method of exception handling strategies, EH-Recommender
can help developers to handle exception more efficiently.

VII. CONCLUSION

Exception handling is a development task which is of
significant importance to the code robustness and the software
reliability. However, how to handle exceptions properly is
still a challenge for many developers, due to the lack of
specific rules and effective tools for assistance. To bridge
this gap, in this paper, we propose the approach named EH-
Recommender. The basic idea is to learn the good exception
handling experience from existing high-quality open source
projects and well-skilled developers and leverage the learned
model to recommend appropriate exception handling strategies
for developers. The experiment achieves promising recommen-
dation accuracy, which indicates that the practical value of EH-
Recommender in helping developers improve the quality of
exception handling code. In the next step, we are preparing to
improve the quality of our recommendation by extracting more
general high-level architectural features, and exploring the
transfer learning and few-shot learning technique, to improve
the performance of cross-project recommendation.
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