
Developer Prioritization in Bug Repositories

Jifeng Xuan
xuan@mail.dlut.edu.cn

He Jiang
jianghe@dlut.edu.cn

Zhilei Ren
ren@mail.dlut.edu.cn

Weiqin Zou
zou@mail.dlut.edu.cn

School of Software, Dalian University of Technology

Dalian, China

Abstract—Developers build all the software artifacts in de-
velopment. Existing work has studied the social behavior in
software repositories. In one of the most important software
repositories, a bug repository, developers create and update
bug reports to support software development and maintenance.
However, no prior work has considered the priorities of devel-
opers in bug repositories. In this paper, we address the prob-
lem of the developer prioritization, which aims to rank the
contributions of developers. We mainly explore two aspects,
namely modeling the developer prioritization in a bug reposi-
tory and assisting predictive tasks with our model. First, we
model how to assign the priorities of developers based on a
social network technique. Three problems are investigated,
including the developer rankings in products, the evolution
over time, and the tolerance of noisy comments. Second, we
consider leveraging the developer prioritization to improve
three predicted tasks in bug repositories, i.e., bug triage, sever-
ity identification, and reopened bug prediction. We empirically
investigate the performance of our model and its applications
in bug repositories of Eclipse and Mozilla. The results indicate
that the developer prioritization can provide the knowledge of
developer priorities to assist software tasks, especially the task
of bug triage.

Keywords-developer prioritization; software evolution; bug
triage; severity identification; reopened bug prediction

I. INTRODUCTION
A bug repository is a vital database in modern software

development. Many software projects create and maintain
bug repositories for storing and updating the information of
problems or suggestions about projects [1]. The widely
available bug repositories have provided an important plat-
form for investigating the quality of software [16]. With the
growth in scale, developers in large projects must handle a
large number of bugs in bug repositories. For example, from
Oct. 2001 to Dec. 2010, the bug repository of an open source
project, Eclipse [12], has recorded 333371 bugs, which are
totally commented for 1544996 times by 34917 contributors
around the world.

In Peopleware, Demarco & Lister [11] have proposed
“The major problems of our work are not so much technolo-
gical as sociological in nature”. All the software artifacts in
software repositories are created, updated, and studied by
people. The social behavior of people has a significant im-
pact on software development. Existing work has examined
the social networks for some kinds of software repositories.
For mailing list repositories, Bird et al. mine communication
networks and discover the community structure from email
archives [8]; Wolf et al. predict software build failures using

social networks measures on the developer communication
[34]. For change log repositories, Meneely et al. [25] and
Pinzger et al. [27] build developer networks to predict soft-
ware failures. For bug repositories, Hong et al. have divided
the developer network into several communities, which iden-
tify the sub-groups of developer communication [17]. How-
ever, no prior work has considered the priorities of develop-
ers in bug repositories and its applications.

In this paper, we model the developer prioritization using
a socio-technical approach to improve three predicting tasks
centering on bug repositories. In contrast to dividing the de-
veloper network into communities in [17], we generate the
developer prioritization by ranking all the participant devel-
opers of bug repositories. Based on our approach, we further
study four Research Questions (RQs) with the experiments
on two typical open source projects, namely Eclipse and
Mozilla. We analyze the characteristics of developer prioriti-
zation to address the first three RQs, which study the devel-
oper priorities in products, the evolution over time, and the
tolerance of noises, respectively; on the other hand, we ad-
dress the last RQ by leveraging the developer prioritization
to improve three typical tasks of bug repositories, including
bug triage, severity identification, and reopened bug predic-
tion. The experiments show that the developer prioritization
is helpful to improve the predicting tasks in bug repositories.
Especially, for bug triage, the average accuracy is improved
up to 13% by combining the developer prioritization.

The primary contributions of this paper are as follows:
1. We identify the developer prioritization of bug reposi-

tories based on a socio-technical approach. In our work, each
developer is mapped to a probability to indicate the priority
in software development. To our knowledge, this is the first
work for ranking developers with social networks in bug
repositories.

2. We present detailed analysis of our developer prioriti-
zation. In the analysis, we examine the characteristics of the
developer prioritization in bug repositories, including the
developer priorities in products, the evolution, and the toler-
ance of noises.

3. We explore how to improve the tasks in bug reposito-
ries. We present the results of three typical tasks, i.e., im-
proving bug triage by mixing the developer priorities, identi-
fying bug severity by adding new features, and predicting
reopened bugs by changing metrics. To our knowledge, this
is the first work to evaluate the results of socio-techniques on
bug-related tasks.

The remainder of this paper is organized as follows. Sec-
tion II states the background. Section III shows the approach

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland25

to recognize the developer prioritization. In Section IV, we
study the characteristics of developer prioritization on bug
repositories. In Section V, we describe how to improve soft-
ware tasks by leveraging the developer prioritization. Section
VI gives the threats to validity and Section VII shows the
related work. Section VIII briefly summarizes this paper and
presents the future work.

II. BACKGROUND
Bug repositories (also known as bug tracking systems)

are deployed in software projects for the storage and man-
agement of bugs. A bug in bug repositories is recorded as a
bug report, which is filled with the information of a software
problem. Based on the bug reports, developers1

[40]
 can collect

and reproduce bugs for bug fixing . In empirical software
engineering, many software tasks are investigated on bug
repositories, e.g., assigning bugs to correct developers to
reduce the time of bug fixing [1], [19], [32], summarizing a
long bug report into a short abstract [29], detecting duplicate
bugs to avoid repetitive operations [28], [35], [31], and cha-
racterizing factors of bug fixing [15].

In bug repositories, a bug report belongs to a component
of a product. A product consists of multiple components and
some products may share a common component. For exam-
ple, Products firefox and core in Mozilla [22] use a common
component, file handling. During the process of bug fixing,
developers label a bug report with various statuses to denote
a bug report as new, assigned, resolved, reopened, etc [18].
Once a bug report is created, any developer, who is interest-
ed in this bug, can make comments to communicate with
relevant developers. In existing work on bug repositories,
developers are always treated equally. However, the priority
of a developer plays an important role in the tasks. For ex-
ample, an active developer may make more contributions on
bug fixing than an inactive one; an experienced tester may
find bugs with higher severities than a common end user. In
this paper, we rank all the developers of bug repositories to
assist the tasks around bug repositories. We denote the
process of generating the developer priorities as developer
prioritization.

1 In this paper, “developers” refers to the people who contribute to a bug
repository. We follow existing work [17], [19] to use the term developers
in a broad sense, including reporters, programmers, testers and active end
users. We denote a developer with the user name in the email instead of the
real name.

We take two bug reports (bug IDs 261871 and 264696)
in Eclipse as examples to illustrate the developer prioritiza-
tion. Both of these bugs are fixed bugs in Product Plug-in
Development Environment (PDE). In Table I, we list the
details of these two bugs. Each bug report is reported by one
developer and commented by developers for 7 times. We
find that these two bugs share two common developers, ca-
niszczyk and cwindatt. We illustrate the process of comment-
ing among the developers in Fig. 1. An arrow with a value in
Fig. 1 is called a link.

A question for us is how to prioritize the five developers
for these two bug reports. This question is not easy to answer.
Intuitively, both caniszczyk and cwindatt contribute to two
bug reports while the other developers contribute to only one.
On the other hand, ankur_sharma, cwindatt, and bcabe are
very active since there are 3 links from each of them and 3
links to each of them (also a self-link for cwindatt). In this
paper, we aim to model the developer prioritization. Fur-
thermore, since developer factors are important for the me-
trics of software quality [40], another question is how to im-
prove the software quality with the developer prioritization.
In our work, we want to extract knowledge from the devel-
oper priorities to assist software development.

III. IDENTIFYING THE DEVELOPER PRIORITIZATION
In this section, we model the developer prioritization by

extending a social network technique. We present the
framework of developer prioritization and propose four re-
search questions for further studies.

A. Framework of Developer Prioritization
Motivated by Fig. 1, we define the developer prioritiza-

tion in our work.
Developer prioritization is a process to assign a priority

to each developer in a bug repository and to rank all the con-
tributions of developers to assist software tasks.

We extend a recent socio-technical approach proposed by
Lü et al. [21] to identify the developer prioritization. In their
work, a leadership network is proposed to investigate the
social analysis between leaders and fans on an online book-
marking website. In our developer prioritization, we transfer
their work to developers in a bug repository. We contribute
in two extensions. First, we adapt the original binary weights
of links to integer weights based on the number of comments.

TABLE I. TWO BUG REPORTS IN ECLIPSE

Commenter
order

Bug ID 261871 Bug ID 264696
Developer Date & time Developer Date & time

Reporter olivier_thomann 09-01-21 12:39 cwindatt 09-02-12 10:02
Commenter 1 cwindatt 09-01-21 12:54 cwindatt 09-03-12 16:25
Commenter 2 bcabe 09-01-21 12:56 ankur_sharma 09-04-03 16:24
Commenter 3 olivier_thomann 09-01-21 13:40 cwindatt 09-04-06 10:31
Commenter 4 bcabe 09-01-21 14:08 ankur_sharma 09-04-14 17:01
Commenter 5 olivier_thomann 09-01-21 14:18 caniszczyk 09-04-14 19:53
Commenter 6 bcabe 09-01-21 15:43 ankur_sharma 09-04-15 06:49
Commenter 7 caniszczyk 09-01-23 10:58 cwindatt 09-04-15 12:49

Figure 1. An illustration of the communication among developers. A
link denotes a comment and the value of a link denotes the times of
comments, e.g., the link with a value 1 from bcabe to caniszczyk means
that caniszczyk has made one comment on bcabe (based on Commenters
6 and 7 in bug ID 261871).

26

Second, we propose a topic-based prioritization by specify-
ing a product or a component.

We present the brief framework of the developer prioriti-
zation in Algorithm 1. Given 𝑛𝑛 developers in a bug reposito-
ry, the goal of developer prioritization is to generate a score
𝑆𝑆𝑖𝑖 for each developer 𝑑𝑑𝑖𝑖 and rank all the developers based on
these scores. A weight 𝑤𝑤𝑖𝑖𝑖𝑖 denotes the number of all the
comments in a link from a developer 𝑑𝑑𝑖𝑖 to 𝑑𝑑𝑖𝑖 . If no link ex-
ists between 𝑑𝑑𝑖𝑖 and 𝑑𝑑𝑖𝑖 , 𝑤𝑤𝑖𝑖𝑖𝑖 = 0. Specially, we remove all the
self-links since we omit the influence of comments from a
developer to himself/herself (e.g., the self-link of cwindatt
in Fig. 1). To build a connected graph based on all the links,
a virtual developer 𝑑𝑑0 is added to connect all the developers.
Then, we add a bi-directional link between each original
developer 𝑑𝑑𝑖𝑖 and 𝑑𝑑0 . The weights of this link, 𝑤𝑤𝑖𝑖0 and 𝑤𝑤0𝑖𝑖 ,
are set to 1 for each 𝑑𝑑𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛). For each developer, let
𝑜𝑜𝑖𝑖 (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛) denote the out-degree of 𝑑𝑑𝑖𝑖 . Note that both
out-degrees and in-degrees are informative to study the so-
cial networks in bug repositories [17]. In our work, we use
out-degrees to reflect the influences of both reporters and
commenters.

We consider that the developer prioritization is generated
based on the changes of time series. We denote 𝑠𝑠𝑖𝑖(𝑡𝑡) as the
score of developer 𝑑𝑑𝑖𝑖 (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛) at time 𝑡𝑡. Thus, we calcu-
late this score,

𝑠𝑠𝑖𝑖(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠𝑖𝑖 (𝑡𝑡 − 1) 𝑜𝑜𝑖𝑖⁄𝑛𝑛
𝑖𝑖=0 (1)

The initial score 𝑠𝑠𝑖𝑖(0) = 1 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 and 𝑠𝑠0(0) = 0.
Lü et al. have proved that the above model can converge
after finite time [21]. Given the convergence time 𝑡𝑡𝑐𝑐 , we
generate the final score of 𝑑𝑑𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛),

𝑆𝑆𝑖𝑖 = (𝑠𝑠𝑖𝑖(𝑡𝑡𝑐𝑐) + 𝑠𝑠0(𝑡𝑡𝑐𝑐)/𝑛𝑛) 𝑀𝑀⁄ (2)
where 𝑀𝑀 is a parameter for normalization and 𝑀𝑀 =

𝑠𝑠0(𝑡𝑡𝑐𝑐) 𝑛𝑛⁄ + 𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑖𝑖≤𝑛𝑛𝑠𝑠𝑖𝑖(𝑡𝑡𝑐𝑐). Thus, each developer in the bug
repository is assigned with a score 𝑆𝑆𝑖𝑖 (0 < 𝑆𝑆𝑖𝑖 ≤ 1).

We rank all the participant developers by their scores in
descending order. In other words, a developer in a top rank
owns a higher priority than a developer in a bottom rank. We
apply the developer prioritization to the example in Fig. 1.
The scores of the five developers are 𝑆𝑆𝑚𝑚𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 _𝑠𝑠ℎ𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 = 1.0 ,
𝑆𝑆𝑐𝑐𝑤𝑤𝑖𝑖𝑛𝑛𝑑𝑑𝑚𝑚𝑡𝑡𝑡𝑡 = 0.9012, 𝑆𝑆𝑏𝑏𝑐𝑐𝑚𝑚𝑏𝑏𝑏𝑏 = 0.7956, 𝑆𝑆𝑐𝑐𝑚𝑚𝑛𝑛𝑖𝑖𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 = 0.7274, and
𝑆𝑆𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑏𝑏𝑎𝑎 _𝑡𝑡ℎ𝑜𝑜𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 = 0.6763 , respectively; the developer an-
kur_sharma has the highest priority among these five de-
velopers.

The scores of these five developers illustrate that Algo-
rithm 1 can quantify the priorities of developers. In contrast

to the same value by measuring out-degrees (e.g., the same
out-degree of ankur_sharma, cwindatt, and bcabe), Algo-
rithm 1 distinguishes the developers with the same out-
degree.

Based on Algorithm 1, the developer prioritization can be
adapted to a topic-based model. In a bug repository, we
usually focus on a specified product or component of the
project. A straightforward choice is to denote a topic with a
product or a component. For example, given a product, we
can generate the developer priorities based on the bug com-
ments related to this product. Product-based or component-
based developer prioritization is helpful to study the priori-
ties of developers in a specified part of the project.

B. Research Questions
We propose four Research Questions (RQs) to investi-

gate the developer prioritization. These four RQs are divided
into two categories, namely the characteristic analysis and
the applications. We answer these two categories of RQs in
Section IV (RQ1-RQ3) and Section V (RQ4), respectively.

RQ1. Does the developer prioritization for the whole
project differ from the one for a product?

RQ2. How does the developer prioritization evolve over
time?

RQ3. Is the developer prioritization tolerant to noisy
comments?

To analyze the characteristics of the developer prioritiza-
tion, in RQ1, we study the differences of the developer pri-
oritization between the products and the whole project; in
RQ2, we study the evolution of the developer prioritization
over time; in RQ3, we examine the tolerance of noises for
the developer prioritization.

RQ4. Can we use the developer prioritization to assist
the existing tasks in bug repositories?

An important problem is to explore the applications of
the developer prioritization. In RQ4, we investigate how to
incorporate the developer prioritization to improve typical
tasks in bug repositories.

IV. ANALYZING THE DEVELOPER PRIORITIZATION
To explore the answers to the above four RQs, we con-

duct experiments on bug repositories of two open source
projects, Eclipse and Mozilla. In this section, we present the
details of the data collection and investigate the answers to
RQ1 - RQ3.

A. Data Collection
We analyze the characteristics of the developer prioritiza-

tion based on bug repositories of Eclipse and Mozilla. These
two projects have attracted wide interests since both of them
are large scale and open source projects. In our work, we

Algorithm 1. Framework of Developer Prioritization

Input: developer 𝑑𝑑𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛), links among 𝑑𝑑𝑖𝑖
Output: final score 𝑆𝑆𝑖𝑖 for each developer 𝑑𝑑𝑖𝑖
1 add a virtual developer 𝑑𝑑0 and add bi-directional links with 𝑑𝑑0;
2 set initial scores 𝑠𝑠𝑖𝑖(0) = 1 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) and 𝑠𝑠0(0) = 0;
3 for 𝑡𝑡 = 1 to 𝑡𝑡𝑐𝑐 do // 𝑡𝑡𝑐𝑐 is the time for convergence
4 calculate the score of each 𝑑𝑑𝑖𝑖 (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛) at time 𝑡𝑡 with (1);
5 calculate the final score of each 𝑑𝑑𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) with (2).

TABLE II. SCALES OF DATA SETS

Projects #Bug reports #Developers #Comments #Products #Components Period

Eclipse 332142 34917 1544996 160 835 01-10-10
to 10-12-31

Mozilla 599870 146500 4543146 58 782 98-04-07
to 10-12-31

27

collect all the bug reports before 2011, i.e., bugs 1-333371 in
Eclipse and bugs 1-662320 in Mozilla. The details of our
data sets are listed in Table II. Note that the number of bug
reports does not equal to the range of bug IDs since some
bug reports are removed in development (e.g., bug 5315 in
Eclipse) or not anonymously accessible (e.g., bug 400020 in
Mozilla).

For each bug report, we extract the bug ID, the reporter,
the fixer, the summary, the description, the creating time,
and the comments. For each comment on a bug report, we
extract the commenter and the commenting time. Since the
fixer of a bug report is not always correctly labeled, the heu-
ristics in [1] are used to recognize the correct fixers in bug
repositories. In this section, we mainly focus on the com-
ments of bug reports while in Section V, we will further
study the texts of bug reports, e.g., the summary and the de-
scription.

B. Answer to RQ1, Developer Prioritization in Products
 Most open source projects consist of multiple products,

each of which can be viewed as a sub-project for a set of
individual requirements. In practice, a developer can partici-
pate in multiple products since the experience from one
product may guide the development of another one. In this
sub-section, we examine the changes of developer prioritiza-
tion between the whole project and its products.

Before studying the developer prioritization for products,
we first illustrate the developer rankings in the whole
projects in Fig. 2. Three indicators of developers are used,
namely the rank in the developer prioritization, the out-
degree in a bug repository, and the number of fixed bugs. We
choose the out-degree as an indicator since the developer
prioritization is constructed based on the out-degrees of de-

velopers (in Algorithm 1). Note that since not all the bugs are
fixed in bug repositories, we only count the number of fixed
bugs based on bug reports with the resolution “fixed” to
simplify the statistics.

In Fig. 2, a developer with a large out-degree leads to a
high priority in developer rankings. Moreover, most of de-
velopers with high priorities have fixed a large amount of
bugs, e.g., most of the largest circles for developers (who
have fixed over 1500 bugs) lie in top 40 ranks. We can ob-
serve that the curve of Eclipse is not as stable as that of Mo-
zilla. In Eclipse, most of the out-degrees are over 2000. In
both Eclipse and Mozilla, there are some developers who are
dominant in both the priority and the number of fixed bugs,
i.e., top 2 developers in Eclipse and top 4 developers in Mo-
zilla. These dominant developers may be the experienced
experts in software development [2]. Note that some devel-
opers, who have only fixed a small number of bugs, also
have high priorities, e.g., a developer in Mozilla is ranked in
top 30 and has fixed less than 500 bugs. This fact is caused
by the different duties of developers, e.g., an active develop-
er may be not a fixer but a tester.

To observe the differences of developer prioritization be-
tween the whole project and its products, we show the ranks
in 10 products for 5 developers in Fig. 3, who are ranked as
the top 5 in the whole project (i.e., top 5 developers in Fig. 2).
The curves for most developers have the similar trend, e.g.,
in Mozilla, the 5 developers have high priorities in Product
core and have low priorities in Product calendar. An excep-
tion is the rank for Product wtp source editing in Eclipse,
which widely distributes between 1 and 1000. Moreover, a
top developer in the whole project may contribute little to a
product or not participate in a product, e.g., in Eclipse, the
developer john_arthorne has ranked around 900 in Product
birt and the developer darin.eclipse has not contributed to
birt.

(a) Eclipse

(b) Mozilla

Figure 2. Out-degrees for top 100 developers. The diameter of a circle
denotes the number of bug reports for a developer. For example, the
smallest circles denote developers who have fixed less than 500 bugs.
Note that the vertical axis is on a log scale.

(a) Eclipse (b) Mozilla

Figure 3. Ranks in 10 active products for top 5 developers in the whole
project. For each project, the selected products are 10 products, which are
contributed by most developers. In horizontal axis, the number following
with a product name denotes the number of participant developers. Note
that values in the vertical axis are in reverse order.

10
00

10
00

0

0 10 20 30 40 50 60 70 80 90 100

O
ut

-d
eg

re
e

of
 a

 d
ev

el
op

er

Rank

<500
≥500 and # <1000
≥1000 and # <1500
≥1500

30
00

30
00

0

0 10 20 30 40 50 60 70 80 90 100

O
ut

-d
eg

re
e

of
 a

 d
ev

el
op

er

Rank

<500
≥500 and # <1000
≥1000 and # <1500
≥1500

1
10

10
0

10
00

pl
at

fo
rm

 (1
60

71
)

jd
t (

78
21

)

cd
t (

28
32

)

bi
rt

(2
28

4)

eq
ui

no
x

(2
18

7)

pd
e

(2
04

9)

co
m

m
un

ity
 (1

82
2)

wt
p

so
ur

ce
 e

di
tin

g
(1

62
6)

m
yl

yn
 (1

45
4)

em
f (

13
23

)

R
an

k

P roduct name

daniel_megert darin.eclipse
john_arthorne eclipse
david_williams

1
10

10
0

10
00

fir
ef

ox
 (5

91
45

)

co
re

 (4
61

04
)

se
am

on
ke

y
(2

98
24

)

th
un

de
rb

ird
 (

19
09

2)

m
ai

ln
ew

s
co

re
 (1

39
72

)

to
ol

ki
t (

13
61

4)

te
ch

 e
va

ng
el

is
m

 (7
48

2)

co
re

 g
ra

ve
ya

rd
 (

67
45

)

ca
le

nd
ar

 (5
86

2)

bu
gz

illa
 (4

77
6)

R
an

k

P roduct name

bzbarsky bugzilla dbaron
timeless matti

28

Answer to RQ1. The developer prioritization in products
differs from that in the whole project. Specially, certain top
developers in the whole project may contribute little or noth-
ing to a product. Among the participated products, top de-
velopers contribute much to most of products.

C. Answer to RQ2, Evolution of Developer Prioritization
For a large scale software product, personnel changes are

common in development. An active developer may be inac-
tive in a period, or even retire [10]. In this sub-section, we
investigate the evolution of the developer prioritization over
time.

Based on Table II, Eclipse has been developed for over 9
years and Mozilla has been for over 12 years. To investigate
the evolution, we select bug reports in 9 continuous years
from Jan. 2002 to Dec. 2010 (since Eclipse is started from
Oct. 2001). We choose half a year as the unit time by follow-
ing [17]. Thus, the time for each project is divided into 18
periods. We denote the first half of a year with “f” and the
second half of a year with “s”. For each unit time, we gener-
ate the developer prioritization in the whole projects and
analyze the evolution of leading developers over time.

We illustrate the changes of top developers in Fig. 4. To
simplify the expressions, we denote the developers who are
ranked in top 1000 in the whole project as leaders. Given a
period, a developer is called an old leader or a new leader, if
he or she is a leader in the last period or not, respectively. As
shown in Fig. 4, the ratios in Mozilla are more stable than
those in Eclipse. Moreover, for both projects, the changes
after 2005 are stable. In Eclipse, the ratio of new developers
who are also leaders is over 20% in each unit time. From
2002s to 2006s, the ratio of old developers who are also old
leaders increases with time. In Mozilla, the ratio of new de-
velopers who are leaders is less than 20%.

In both Eclipse and Mozilla, the developer prioritization
changes over time. We list two possible reasons for this fact.

One is that the developer prioritization always changes be-
cause of the complexity of such large projects; the other is
the unit time in our experiments is not short enough to rec-
ognize the fixed developer prioritization. A further study is
needed to explore the appropriate unit time to model un-
changed developer prioritization in projects.

Answer to RQ2. The developer prioritization evolves
over time. A new developer can join the projects and become
a developer with high priorities.

D. Answer to RQ3, Tolerance of Noisy Comments
The process of fixing and localizing bugs suffers from

the bad quality of bug reports [18]. Noises in bug reports are
common in bug repertories. For example, in the bug report
with ID 1 of Eclipse, Comment 45 is just a test of a user ac-
count, which has nothing to do with the content of the bug.
Since the developer prioritization is built based on the bug
comments, we investigate whether the developer prioritiza-
tion is sensitive to noisy bug comments.

Due to the lack of existing method to identify noisy
comments, we label noisy comments with a heuristic. We
consider two types of comments as noises, namely the com-
ments by inexperienced developers and the comments writ-
ten in very few words. Note that not all the comments in
these two types are noisy, e.g., Comment 2 of Bug 250031 in
Eclipse, only containing a full stop, can be viewed as a noisy
comment while Comment 2 of Bug 250033, only containing
a word “verified”, is a useful comment. In this paper, we
directly treat the two types of bug reports as noisy comments
without further identification. In Table III, we present the
ratios of developers and comments for the data sets, which
are generated by removing two types of comments. The sev-
en columns denote three data sets by removing comments of

(a) Eclipse

(b) Mozilla

Figure 4. Percentage for developers and leaders over time. The leaders
(top 1000 developers) in each unit time is considered. The ratio of a new
developer who is a leader, the ratio of an old developer who is a leader,
and the ratio of an old developer who is new as a leader are labeled in
black, light gray, and dark gray, respectively.

(a) Eclipse (b) Mozilla

Figure 5. Changes for the ranks of top 10 developers among the original
data set and new data sets after removing noises. The selected developers
are top 10 developers in the original data set.

TABLE III. RATIOS OF DEVELOPERS AND COMMENTS IN DATA SETS

Project Ratio >15
comments

>10
comments

>5
comments Original >3

words
>6

words
>9

words

Eclipse
Developer (%) 81.24 81.47 82.51 100.00 99.61 98.48 97.02
Comment (%) 95.55 96.46 97.95 100.00 94.14 81.84 71.77

Mozilla
Developer (%) 79.42 79.67 80.81 100.00 99.80 99.28 98.38
Comment (%) 94.77 95.70 97.29 100.00 95.92 88.37 80.78

0%

50%

100%

20
02

f

20
02

s

20
03

f

20
03

s

20
04

f

20
04

s

20
05

f

20
05

s

20
06

f

20
06

s

20
07

f

20
07

s

20
08

f

20
08

s

20
09

f

20
09

s

20
10

f

20
10

s

R
at

io

Time
new developer & leader old developer & leader old developer & new leader

0%

50%

100%

20
02

f

20
02

s

20
03

f

20
03

s

20
04

f

20
04

s

20
05

f

20
05

s

20
06

f

20
06

s

20
07

f

20
07

s

20
08

f

20
08

s

20
09

f

20
09

s

20
10

f

20
10

s

R
at

io

Time

new developer & leader old developer & leader old developer & new leader

0
3

6
9

12

>
15

 c
om

m
en

ts

>
10

 c
om

m
en

ts

>
5

co
m

m
en

ts

or
ig

in
al

>
3

w
or

ds

>
6

w
or

ds

>
9

w
or

ds

R
an

k

Da ta set

daniel_megert darin.eclipse
john_arthorne eclipse
david_williams olivier_thomann
denis.roy webmaster
tod_creasey steve_northover

0
3

6
9

12

>
15

 c
om

m
en

ts

>
10

 c
om

m
en

ts

>
5

co
m

m
en

ts

or
ig

in
al

>
3

w
or

ds

>
6

w
or

ds

>
9

w
or

ds

R
an

k

Da ta set

bzbarsky bugzilla dbaron
timeless matti gerv
asa roc brendan
neil

29

inexperienced developers (5, 10, and 15), the original data
set, and three data sets by removing comments written in few
words (3, 6, and 9).

We illustrate the changes of the developer prioritization
in Fig. 5. We can find that our approach for the developer
prioritization is tolerant to noisy comments. The change
among each data set is inconspicuous. This fact coincides
with our expectation since we always focus on the develop-
ers with high priorities, who contribute many comments to
bug repositories. The noisy comments removed in our expe-
riments only affect the developers with few comments.

Answer to RQ3. The developer prioritization in our
work is insensitive to noisy comments. Therefore, the devel-
oper prioritization can be used to handle the real data sets,
which include noisy bug comments.

V. LEVERAGING THE DEVELOPER PRIORITIZATION
In this section, we explore the results of leveraging the

developer prioritization to assist the tasks in bug repositories.
We answer RQ4 by examining the effects on three typical
tasks, i.e., bug triage, severity identification, and reopened
bug prediction. All these tasks have been addressed to im-
prove the quality of software development. We select such
three tasks since they cover various aspects of predictive
tasks. In details, bug triage [1] is a multiple-class task based
on bug repositories; severity identification [20] is a binary-
class task based on bug repositories; and reopened bug pre-
diction [30] is a binary-class task based on both bug reposito-
ries and change log repositories.

In this section, we combine the input or the output of a
task with developer priorities obtained by the developer pri-
oritization. By combining with the input, we add new fea-
tures to the predictive model while by combining with the
output, we update the results of a task. In Fig. 6, we briefly
summarize the process for improving the results of the three
tasks by combining the developer priorities.

A. Bug Triage
Bug triage is a typical problem in software maintenance,

which aims to predict a correct developer for a new-coming

bug [1]. Traditionally, a human developer (also called triager)
assigns new bugs to candidate developers. Automatic ap-
proaches for bug triage have been developed to reduce time
and labor cost. Most of existing work models bug triage as
text classification and improves the accuracy of bug triage
based on the knowledge from bug repositories [1], [19], [38],
[32].

In this paper, we consider improving bug triage with the
developer prioritization obtained from bug repositories. For a
predicted list of developers by a classifier, we rank these
developers by the priorities. Thus, the developer prioritiza-
tion is used to discriminate the developers with similar prob-
abilities in the prediction.

 We evaluate the results of bug triage with the incremen-
tal learning framework, in which we chronologically sort all
the bug reports and divide these bug reports into 11 folds [6].
Thus, we perform experiments in 10 rounds. In each round,
we generate the developer prioritization from the training set
and combine the developer priorities with the predicted re-
sults of the classifiers. In Fig. 7, we present the evaluation
framework in our work.

We validate our approach on the bugs from 200001 to
300000 for Eclipse and bugs from 400001 to 500000 for
Mozilla. We follow the existing work [1], [9] to remove the
non-fixed bug reports (only bug reports with the resolution
“fixed” are left) and inactive developers (in our work, devel-
opers who have fixed less than 50 bugs are removed). As a
result, 49762 bug reports of Eclipse and 30609 bug reports of
Mozilla are left as data sets. For each bug report, the title and
the description are extracted as an input text while the devel-
oper who has fixed this bug is extracted as a label for the
classifier. We convert the bug reports into vector space mod-
el by tokenizing the sentences into terms. We perform the
techniques of removing stop words, stemming, and tf-idf (a
weighted term-frequency approach [33]) to generate the final
data sets. We evaluate the experiments with the accuracy of
top-k predicted developers since a recommendation list is
always employed [2]. The accuracy is calculated as
𝐴𝐴𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑚𝑚𝑐𝑐𝑐𝑐𝑎𝑎 = # 𝑐𝑐𝑜𝑜𝑎𝑎𝑎𝑎𝑏𝑏𝑐𝑐𝑡𝑡𝑜𝑜𝑐𝑐 𝑝𝑝𝑎𝑎𝑏𝑏𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑏𝑏𝑑𝑑 𝑏𝑏𝑎𝑎𝑏𝑏𝑠𝑠

𝑚𝑚𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑏𝑏𝑎𝑎𝑏𝑏𝑠𝑠
 based on a recommendation

list with size k. We employ two typical classifiers, i.e., Naive
Bayes (NB) and Supporting Vector Machine (SVM). These
classifiers are implemented by Weka [33].

Figure 6. Leveraging the developer prioritization to predict tasks around
bug repositories. We use the developer prioritization to assist three tasks. A
circle denotes an action of predicting.

Figure 7. Bug triage combined with the developer prioritization based
on the incremental learning. In Round r, the first r folds are used for
training a classifier and generating the developer prioritization while the
(r+1)th fold is used for testing. The developer prioritization is combined
with the result of testing to form a new developer list.

Developer
Comments Developer Prioritization

Combined
Fixer

Rankings

Candidate
Fixers

SeverityCombined
Features

Reopened
or not

Combined
Metrics

B
ug

 R
ep

os
ito

ry

Bug Reports

Bug Reports

Bug Metrics

 Task
 Bug Triage

 Task
 Severity Identification

 Task
 Reopened Bug Prediction

Developer
Priorities

Developer
Priorities

Triaging

Identifying

Predicting

Developer
Priorities

Fold 1 Fold 2 Fold 3 Fold 11

Training Testing

Developer
Prioritization

Combined
Ranking

Training Testing

Developer
Prioritization

Combined
Ranking

Training Testing

Developer
Prioritization

Combined
Ranking

Fold 4 Fold 10...

...

Round 1

Round 2

Round 10

Bug
Reports

30

In the following of this sub-section, we present the expe-
rimental results on bug triage. To obtain a high accuracy, we
examine several ways to generate the developer prioritization
from bug comments in training sets. We consider this prob-
lem on two dimensions, namely the source and the time pe-
riod of developer prioritization. On one hand, in RQ1, we
have presented that the developer prioritization changes in
different products. Thus, we generate the developer prioriti-
zation based on products, components, and products & com-
ponents, respectively. On the other hand, in RQ2, we have
verified that the developer prioritization in two close periods
can be very similar. Thus, we consider two kinds of time
periods for building the developer prioritization, i.e., the ac-
cumulative folds in the training set and the latest fold in the

training set. Taken Round 2 in Fig. 7 as an example, Folds 1
and 2 are used to build the developer prioritization by choos-
ing the accumulative folds while only the Fold 2 is used by
choosing the last fold.

To improve bug triage, we combine the product-based
and the component-based developer prioritization with the
predicted results of classifiers. Given a new bug report, we
extract its product and its component. We combine the prob-
abilities in prediction with the developer priorities, which
match its product and its component. Formally, given a new
bug report 𝐵𝐵, its product 𝑝𝑝, and its component 𝑐𝑐, the final
score is 𝐹𝐹𝑖𝑖 = 𝑃𝑃𝑖𝑖 + (𝑆𝑆𝑖𝑖

𝑝𝑝 + 𝑆𝑆𝑖𝑖𝑐𝑐)/𝑀𝑀𝑠𝑠, where 𝑃𝑃𝑖𝑖 is the probability
predicted for each developer 𝑑𝑑𝑖𝑖 by a classifier, 𝑆𝑆𝑖𝑖

𝑝𝑝 is the
score in 𝑝𝑝-based developer prioritization, 𝑆𝑆𝑖𝑖𝑐𝑐 is the score in 𝑐𝑐-
based developer prioritization, 𝑀𝑀𝑠𝑠 is the maximum value in
𝑛𝑛 developers for normalization (𝑀𝑀𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑖𝑖≤𝑛𝑛(𝑆𝑆𝑖𝑖

𝑝𝑝 + 𝑆𝑆𝑖𝑖𝑐𝑐)).
The score 𝑆𝑆𝑖𝑖

𝑝𝑝 or 𝑆𝑆𝑖𝑖𝑐𝑐 is set to zero if a developer never appears
in a product or a component. Then, we rank the developers
by these final scores and select developers with highest
scores as the final results. To obtain the rankings of top-k
developers for a bug report, we use a classifier to predict 2𝑎𝑎
developers and rank these developers by the combined final
scores. Then, top-k developers in the new rankings are se-
lected as the final predicted results. In our work, we examine
the results of top-5 developers.

In Fig. 8, we present the accuracy of the top-1 developer
in each round. In both Eclipse and Mozilla, the approaches
combined with the developer prioritization can obtain higher
accuracy than directly using SVM. Most of the results based
on the latest fold are better than those based on the accumu-
lative folds. As a result, we observe that the recent changes
of developers can be more helpful than the accumulative

(a) Eclipse (b) Mozilla

Figure 8. Accuracy for the top-1 predicted developer in 10-round
incremental learning. SVM denotes the accuracy only based on the
classifier, P and C denote the approach combining with the developer
prioritization based on products and components, respectively. A and L
denotes the approach based on the developer proritization, which is
extracted from the accumulative folds and the latest fold in the training set,
respectively.

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y

Round

SVM P+A C+A
P+C+A P+L C+L
P+C+L

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10
A

cc
ur

ac
y

Round

SVM P+A C+A
P+C+A P+L C+L
P+C+L

TABLE IV. PREFORMANCE OF BUG TRIAGE ON ECLIPSE AND MOZILLA

Project Classifier Size Approach Accuracy in Each Round (%) Average
Accuracy Improvement 1 2 3 4 5 6 7 8 9 10

Eclipse

SVM

Top 1 SVM 15.12 17.04 20.40 21.37 19.50 19.47 20.71 23.36 23.08 22.29 20.24 10.89
SVM+DP 22.61 25.86 29.02 34.35 32.01 29.29 32.23 34.20 34.82 36.86 31.12

Top 3 SVM 27.41 30.70 34.62 38.20 33.60 34.02 37.93 40.27 39.16 40.48 35.64 12.94
SVM+DP 38.35 42.29 46.84 52.30 47.02 45.51 52.06 53.51 52.27 55.60 48.57

Top 5 SVM 32.65 36.49 43.41 45.87 42.31 42.44 46.97 48.41 48.42 49.13 43.61 9.49
SVM+DP 40.16 45.34 52.12 55.86 51.15 51.17 57.67 59.02 58.41 60.05 53.10

NB

Top 1 NB 27.37 28.43 28.14 30.97 29.00 28.03 30.35 28.63 29.01 30.78 29.07 2.88
NB+DP 30.57 32.12 31.28 33.47 32.07 30.55 32.96 31.43 31.77 33.23 31.94

Top 3 NB 33.73 35.41 34.13 36.32 34.33 33.05 36.16 34.84 34.27 36.15 34.84 1.88
NB+DP 35.94 37.82 36.54 38.28 36.38 35.01 37.80 36.36 35.44 37.59 36.72

Top 5 NB 34.88 36.60 35.10 37.25 35.19 33.73 36.91 35.74 34.78 36.97 35.72 1.17
NB+DP 36.16 38.00 36.58 38.40 36.63 35.12 37.93 36.43 35.66 37.92 36.88

Mozilla

SVM

Top 1 SVM 14.66 16.24 12.83 14.41 13.69 14.95 15.20 17.36 21.39 22.39 16.31 13.64
SVM+DP 26.91 26.84 27.78 29.39 26.41 25.01 29.08 32.96 38.43 36.74 29.95

Top 3 SVM 29.93 37.30 34.78 33.92 34.85 33.24 36.56 39.97 44.54 45.40 37.05 12.87
SVM+DP 42.33 48.87 45.60 47.75 44.70 43.98 50.29 55.46 61.04 59.13 49.91

Top 5 SVM 37.26 47.00 44.84 45.06 44.66 43.41 47.41 52.23 56.69 57.40 47.60 9.38
SVM+DP 46.78 54.76 53.47 54.19 52.61 53.58 58.30 62.44 67.61 66.03 56.98

NB

Top 1 NB 27.60 25.04 24.54 24.69 24.90 24.25 27.64 29.19 31.24 32.14 27.12 2.30
NB+DP 30.08 27.56 26.59 26.88 26.70 26.52 29.91 31.13 34.15 34.76 29.43

Top 3 NB 33.78 32.20 30.65 30.08 31.55 31.76 34.69 35.73 37.78 39.25 33.75 2.36
NB+DP 36.87 34.75 33.24 32.45 33.45 33.96 36.99 37.28 40.22 41.91 36.11

Top 5 NB 35.14 33.96 31.98 31.15 32.84 33.35 35.69 36.77 39.18 40.80 35.09 1.56
NB+DP 37.15 34.96 33.74 32.81 34.32 34.93 37.53 37.81 40.83 42.38 36.65

31

changes. This observation coincides with the existing work
[1], [6] that the latest activity of a developer is representative.
Among seven approaches in each sub-figure of Fig. 8, the
approach combined with the developer prioritization based
on products and components has the highest accuracy. In the
rest of this sub-section, we choose such combination as the
approach in the experiments.

In Table IV, we present the results of bug triage by com-
bining the developer priorities with the output of the classifi-
er in Eclipse and Mozilla. SVM+DP and NB+DP denote the
results, which are ranked by combining the developer priori-
tization with the output of SVM and NB, respectively. We
can find that for both of SVM and NB, the accuracy is im-
proved when combining with the developer prioritization.
The average improvement for SVM is around 10% while the
average improvement for NB is only about 2%. The reason
for such results is that the combination with the developer
prioritization is based on the probability predicted by clas-
sifiers and SVM has stronger ability on discriminating dif-
ferent classes than NB. Thus, for NB, the ranks of developers
may not change too much by combining the developer priori-
tization. As shown in Table IV, the improvement for the top
1 is larger than that for top 5. The improvement for SVM in
some rounds are over 15%, e.g., Round 10 with top 3 devel-
opers in Eclipse and Round 9 with top 3 in Mozilla.

B. Severity Identification
Since the number of daily bugs is large to handle, new

bugs in bug repositories are divided into different severities
to process for different goals. Existing work (robotic severity
[23], security severity [14], and critical severity [20]) has
identified bug severities with predictive techniques.

In this sub-section, we address the critical severity prob-
lem. Lamkanfi et al. [20] predict whether a new bug is severe
by adapting a text classification technique. In their work, a
set of bug reports, including non-severe or severe ones, are
divided into a training set and a test set. The 10-fold cross
validation [33] is used to evaluate the results of classification.
For a bug report with a self-reported severity, trivial or mi-
nor, is considered as a non-severe bug while major, critical,
or blocker is considered as a severe one. Given a new bug
report, the title of this bug is extracted to build the vector
space model. The stop word removal, stemming techniques
are performed (note that no tf-idf technique is used). Based
on the vector space of training sets, Naive Bayes (NB) clas-
sifier is employed to identify whether a bug is severe or not.

In existing work by Lamkanfi et al. [20], the severity of a
bug is predicted by the numeric vector, which is converted
from the bug title. We consider adding the factors of devel-
opers to predict severities. For new bugs, the priorities of

reporters may provide more information to identify the se-
verity, e.g., a reporter with a high priority may pay more
attentions to the severe bugs. Therefore, for each bug report,
we add two features from the developer prioritization to the
original numeric vectors. These two features are two priority
scores of reporters based on the products and components,
respectively. Then the predictive vector has two more nu-
meric features. Since values in predictive vectors may be
imbalance, we normalize all the features to the range from 0
to 1 for each training set.

In our work, we extract the data sets from bug reposito-
ries of Eclipse (bugs 1-300000) and Mozilla (bugs 300001-
600000). For each project, we select severe and non-severe
bugs in three components in accordance with [20]. These
data sets are presented in Table V. We evaluate the severity
identification with precision, recall, and F-measure.

We present the experimental results in Table VI. For
each component, the first row denotes the classification
based on the original vectors, which are extracted from bug
titles, while the second row denotes the classification based
on the mixed vectors, which are formed by adding two de-
veloper scores. A value in bold denotes a result, which is
over 1% better than the other result on the same component.

As shown in Table VI, the prediction based on the mixed
vectors can obtain better precision, recall, and F-measure on
bugs in Mozilla while the difference of results in Eclipse is
not significant. One possible reason for these results is the
number of original numeric features is large and the effects
of two new dimensions are not obvious to the predictive
model.

C. Reopened Bug Prediction
Reopened bug prediction aims to identify a bug report,

which will be incorrectly fixed in the future. To our know-
ledge, only Shihab et al. [30] have proposed the method to
predict a reopened bug. In their work, they extract 22 factors
in 4 dimensions to build the predictive model based on Ada-
Boost [33]. Among the 4 dimensions of factors, one dimen-
sion is called “people dimension”, which consists of 4 factors
about the developer information of a bug report, i.e., the re-
porter name, the fixer name, the reporter experience, and the
fixer experience.

In this paper, we do not discuss the improvement of the
predictive model of reopened bug prediction. We only con-

TABLE V. NUMBER OF BUGS FOR EACH SEVERITY

Project Product: Component # Non-severe bugs # Severe bugs

Eclipse
Platform: UI 1425 3284

JDT: UI 1425 1533
JDT: Text 816 558

Mozilla
Core: Layout 255 929

Camino: Bookmarks 62 40
Firefox: General 2658 10124

TABLE VI. PERFORMANCE ON SEVERITY IDENTIFICATION

Project Product: Component
Non-severe bugs (%) Severe bugs (%)

Precision Recall F-measure Precision Recall F-measure

Eclipse

Platform: UI 49.6 53.6 51.6 79.1 76.4 77.8
50.1 57.4 53.5 80.3 75.2 77.6

JDT: UI
61.9 66.1 63.9 66.3 62.1 64.2
62.0 66.3 64.1 66.6 62.3 64.4

JDT: Text 78.2 76.5 77.3 66.7 68.8 67.7
78.0 76.7 77.3 66.7 68.3 67.5

Mozilla

Core: Layout 45.5 65.1 53.5 89.1 78.6 83.5
45.6 71.4 55.7 90.7 76.6 83.1

Camino: Bookmarks
76.6 79.0 77.8 65.8 62.5 64.1
77.6 83.9 80.6 71.4 62.5 66.7

Firefox: General 42.8 50.6 46.4 86.4 82.2 84.3
46.2 36.4 40.7 84.2 88.9 86.5

32

sider whether our developer prioritization can provide simi-
lar factors to this model. We evaluate the experiments with
the 10-fold cross validation on the benchmark data set in [30].
This data set consists of 1530 bugs (246 are reopened bugs
and 1284 are not), which are extracted from bugs 1-300000
in Eclipse. We generate the developer prioritization (without
specifying a product or a component) on the bug comments
of bugs 1-300000 and extract the scores of reporters and fix-
ers, who are specified in the data set. Note that we have not
conducted experiments on Mozilla since only the benchmark
for Eclipse is shared in [30].

In the experiments, we add two factors to the people di-
mension, namely the reporter priority score and the fixer
priority score. These 6 factors can be divided into three
groups, i.e., name, experience, and priority. We list 4 combi-
nations of these three groups of factors in the column “factor”
in Table VII (Exp. is short for the group of factors expe-
rience). We run the algorithm AdaBoost in [30] to examine
the results.

As shown in Table VII, by changing the original factors
of name and experience with priority, the performance is
improved. And the combination of all the three groups can
provide the highest performance. We summarize the results
in Table VII that the factors based on the developer prioriti-
zation can provide similar features to the model for predict-
ing reopened bugs and can slightly improve the existing re-
sults. Note that the improvement by adding the factors of
priority scores is not significant. This fact suffers from two
possible reasons. One is the small number of training set may
limit the predictive ability of factors; the other is the existing
results may be good enough and hard to improve.

Answer to RQ4. By examining three typical tasks in bug
repositories, we conclude that the developer prioritization is
helpful to improve the results of these tasks, especially, the
task of bug triage.

VI. THREATS TO VALIDITY

A. Building the Developer Prioritization
In our work, we build the developer prioritization from

bug comments in bug repositories. The developer rankings
are obtained to denote the priorities of developers. Since
there is no real ranking of developers in software projects, it
is hard to validate whether our obtained rankings are coinci-
dent with the real collaboration in development. To address
this problem, a good way is to conduct a case study to ex-
amine the differences between the developer prioritization
and the collaboration in development. Moreover, the devel-
oper prioritization in our work can enhance simple measures,
e.g., distinguishing the developers with the same out-degree.

An experiment should be conducted to compare the priorities
between our work and simply measuring out-degrees.

Besides the developer prioritization for a whole project,
we have also proposed product-based and component-based
developer prioritization in our work. We extract the products
and components from the self-reported terms of bug reports.
However, such terms of products or components may mis-
match the real terms since reporters lack experiences to iden-
tify the correct products or components [40]. To completely
avoid such mismatch, a technique for identifying the correct
product and components should be developed.

B. Analysis of Developer Prioritization
In Section IV, we explore the evolution of developer pri-

oritization over time. The time period is divided into several
half years to study the changes in the process of development.
Besides the time-based evolution, version-based evolution of
the developer prioritization may provide more information.
We do not investigate version-based evolution in our work
since the bug reports in different versions are hard to collect.
For example, among bugs 200001-300000, only 7450 bugs
(7.45%) are identified with version information, which be-
long to 38 products.

To analyze the noise tolerance of developer prioritization,
we recognize noisy comments with a heuristic, which views
the comments by inactive developers and the comments with
few words as noises. Many of such comments consist of noi-
sy information, but some meaningful comments may also be
viewed as noises, such as comments with only one word
“fixed” or “verified”. To exactly recognize noisy comments,
manually labeling is more helpful than a heuristic.

C. Assisting Software Tasks
In this paper, we show that the developer prioritization is

effective to improve the tasks in bug repositories based on
the empirical evaluation. The developer priorities can add
more information to the input features or update the output of
classifiers. However, further questions may be proposed, for
example, what is the internal relationship between the devel-
oper prioritization and the goal of a task? And why is the
social behavior of developers helpful? These questions are
not easy to answer. In this paper, the developer prioritization
can build a bridge from bug repositories to predictive tasks.
For further work, a systematical case study can provide more
information to explore the correlation between the developer
prioritization and the predictive tasks.

VII. RELATED WORK

A. Social Network Analysis in Software Repositories
Bird et al. [3] mine social networks from email achieves

and analyze the developer activity based on social network
measures. Their later work [8] explores communities from
the social networks, which are representative of the collabo-
ration of developer behavior. Wolf et al. [34] employ the
team communication network to predict the failures of soft-
ware builds. In their work, the centrality measures in social
networks are extracted as features in the predictive model.

TABLE VII. FACTORS ON REOPENED BUG PREDICTION IN ECLIPSE

Factor Reopened bugs (%) Non-reopened bugs (%) Accuracy Precision Recall F-measure Precision Recall F-measure
(Original)Name+Exp. 92.8 97.0 94.8 79.3 60.6 68.7 91.11

Exp.+Priority 93.1 96.5 94.8 77.4 62.6 69.2 91.05
Name+Priority 93.0 97.4 95.2 82.2 61.8 70.5 91.70

Name+Exp.+Priority 93.1 97.4 95.2 82.4 62.6 71.1 91.83

33

Social networks have been proposed to improve the
software failure prediction. To predict failures, Meneely et al.
[25] construct developer networks on change log repositories
and Pinzger et al. [27] build developer-module networks on
binary repositories. Bird et al. [7] combine the topological
properties with social networks and investigate multiple
types of relationships to predict failures. Moreover, Betten-
burg & Hassan [4] study the impacts of socio-technical
measures through the failure detection. Since the social tech-
niques are effective for indicating software failures, Meneely
& Williams [24] empirically validate that the social network
metrics can represent the collaboration relationship in soft-
ware development.

By building a social networking service for developers,
Begel et al. [5] introduce a Codebook framework to discover
the inter-team coordination in development. They have con-
ducted two applications to evaluate the effectiveness of their
framework.

In bug repositories, Hong et al. [17] have examined the
developer social networks in bug repositories. They discover
the sub-communities of a developer network and investigate
the evolution over time. In this paper, we also focus on the
socio-technical analysis on bug repositories. In contrast to
the community discovery in [17], we explore the developer
prioritization in bug repositories. We analyze the developer
rankings and improve three existing tasks in bug repositories.

B. Bug Repositories
In this paper, we investigate the developer prioritization

in bug repositories. In existing work on bug repositories,
Fischer et al. [13] explore the proximity of software features.
In their work, bug report analysis is used to study and visual-
ize the relations between software features.

The quality of bug reports is important for locating and
fixing bugs. Hooimeijer & Weimer [18] present the first
work to model the quality of bug reports. Bettenburg et al. [9]
point out that duplicate bugs contain extra information for
bug fixing, which are useful to improve bug triage. Zim-
mermann et al. [40] study the evidence for the mismatch
between developer expectation and bug reports based on a
systematic questionnaire survey. Xiao & Afzal [36] propose
a search-based approach for the resource scheduling on bug
fixing tasks.

Most work on bug repositories treats developers and bugs
separately. Our previous work [37] proposes an integrated
view of developers and bug reports. We transfer the interac-
tions between developers and bug reports to requirements
engineering to supplement the lack of open requirements.

In this paper, we extract the developer prioritization in
bug repositories. Besides the multiple aspects of analysis, we
leverage the developer prioritization to predict software tasks.

C. Predicting Tasks in Bug Repositories
The goal of bug triage is to automatically assign a new

bug to the correct developer to avoid the expensive cost of
maintenance. Čubranić & Murphy [10] have proposed the
first work of bug triage, which transforms bug triage to a text
categorization problem. Anvik et al. [1] extend the above
work with a recommendation list and multiple classifiers.

Jeong et al. [19] and Bhattacharya & Neamtiu [6] propose a
tossing graph based approach to improve bug triage with the
previous assignment history of bug reports. Our previous
work [38] proposes a semi-supervised learning approach to
avoid the lack of qualified bug reports. Recent work by An-
vik & Murphy [2] investigates the effects of recommenders
to assist bug triage for streamlining the development process.
Other work also addresses the problem of bug triage, such as
the training set reduction [39], the fuzzy-set and cache-based
approach [32], and the cost-aware bug triage [26].

Severity identification is to detect the bug severities to
guide the resource allocation and planning of bug fixing. To
date, three types of severities are studied. Menzies & Macus
[23] first propose a text mining approach to detect the 5-level
robotic severity for bug reports in NASA databases. Gegick
et al. [14] and Lamkanfi et al. [20] have further predicted the
security severity and the critical severity of bug reports.

Reopened bug prediction is to detect whether a bug is
fixed in a correct way. Shihab et al. [30] study and predict
reopened bugs on 22 factors in four dimensions, which are
extracted from both bug repositories and source code reposi-
tories. In an empirical study on characterizing which bugs
get fixed, Guo et al. [15] present that the times of reopenings
is a factor to indicate whether a bug can be fixed.

In this paper, we empirically evaluate whether the devel-
oper prioritization can improve the results of the above three
tasks. Besides the three mentioned tasks, existing work im-
proves the software quality in bug repositories on other tasks.
For example, Rastkar et al. [29] summarize long bug reports
to avoid redundancies and noises in bug repositories; Rune-
son et al. [28], Wang et al. [35], and Sun et al. [31] detect
duplicate bug reports to reduce the expense for handling
bugs in large scale repositories.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we model the developer prioritization in

bug repositories by extending a socio-technical approach.
We analyze three problems of the developer prioritization,
namely the characteristics in products, the evolution, and the
tolerance of noises. Based on the analysis, we investigate the
ways to leverage the developer prioritization to improve
three typical tasks in bug repositories. The results are studied
on over 900000 bug reports in Eclipse and Mozilla.

Our future work is to investigate a task-based developer
prioritization in bug repositories to improve a specified task
with the developer rankings. In contrast to the general model
of the developer prioritization, we want to provide a model
to add more knowledge to handle the problems in a specified
task. For example, fixers of bug reports should be added
more weights in the developer prioritization to improve bug
triage.

ACKNOWLEDGMENT
We greatly thank the anonymous reviewers for their in-

sightful comments. This work is partially supported by the
National Natural Science Foundation of China under grants
61175062, 60805024, and 61033012, and the “Software + X”
funding of Dalian University of Technology.

34

REFERENCES
[1] J. Anvik, L. Hiew, and G.C. Murphy, “Who Should Fix This Bug?,”

Proc. 28th Intl. Conf. Software Engineering (ICSE ’06), May 2006,
pp. 361-370.

[2] J. Anvik and G.C. Murphy, “Reducing the Effort of Bug Report
Triage: Recommenders for Development-Oriented Decisions,” ACM
Trans. Software Engineering & Methodology, vol.20, no.3,Aug. 2011.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz and A. Swaminathan,
“Mining Email Social Networks,” Proc. 3rd Intl. Workshop Mining
Software Repositories (MSR ’06), May 2006, pp.137-143.

[4] N. Bettenburg and A.E. Hassan, “Studying the Impact of Social
Structures on Software Quality,” Proc. IEEE 18th Intl. Conf. Program
Comprehension (ICPC ’10), Jun. 2010, pp.124-133.

[5] A. Begel, Y.P. Khoo, and T. Zimmermann, “Codebook: Discovering
and Exploiting Relationships in Software Repositories,” Proc. 32nd
Intl. Conf. Software Engineering (ICSE ’10), May 2010, pp. 125-134.

[6] P. Bhattacharya and I. Neamtiu, “Fine-Grained Incremental Learning
and Multi-Feature Tossing Graphs to Improve Bug Triaging,” Proc.
26th IEEE Intl. Conf. Software Maintenance (ICSM ’10), Sept. 2010,
pp. 1-10.

[7] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting
it All Together: Using Socio-Technical Networks to Predict Failures,”
Proc. 20th Intl. Symp. Software Reliability Engineering (ISSRE ’09),
Nov. 2009, pp.109-119.

[8] C. Bird, D. Pattison, R. D’Souza, V. Filkov and P. Devanbu, “Latent
Social Structure in Open Source Projects,” Proc. 16th ACM
SIGSOFT Intl. Symp. Foundations of software engineering (FSE ’08),
Nov. 2008, pp.24-35.

[9] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
Bug Reports Considered Harmful… Really?,” Proc. 24th IEEE Intl.
Conf. Software Maintenance (ICSM ’08), Sept. 2008, pp. 337-345.

[10] D. Čubranić and G.C. Murphy, “Automatic Bug Triage Using Text
Categorization,” Proc. 16th Intl. Conf. Software Engineering &
Knowledge Engineering (SEKE ’04), Jun. 2004, pp. 92-97.

[11] T. DeMarco and T. Lister, Peopleware: Productive Projects and
Teams, 2nd ed. Dorset House, New York, 1999.

[12] Eclipse. http://eclipse.org/.
[13] M. Fischer, M. Pinzger and H. Gall, “Analyzing and Relating Bug

Report Data for Feature Tracking,” Proc. 10th Working Conf.
Reverse Engineering (WCRE ’03), Nov. 2003, pp. 90-101.

[14] M. Gegick, P. Rotella, and T. Xie, “Identifying Security Bug Reports
via Text Mining: An Industrial Case Study,” Proc.7th IEEE Working
Conf. Mining Software Repositories (MSR ’10), May 2010, pp. 11-20.

[15] P.J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“Characterizing and Predicting Which Bugs Get Fixed: An Empirical
Study of Microsoft Windows,” Proc. 32nd Intl. Conf. Software
Engineering (ICSE ’10), May 2010, pp. 495-504.

[16] A.E. Hassan, “The Road Ahead for Mining Software Repositories,”
Proc. Frontiers of Software Maintenance (FoSM ’08), Sept. 2008, pp.
48-57.

[17] Q. Hong, S. Kim, S.C. Cheung, and C. Bird, “Understanding a
Developer Social Network and its Evolution,” Proc. 27th IEEE Intl.
Conf. Software Maintenance (ICSM ’11), Sept. 2011, pp. 323-332.

[18] P. Hooimeijer and W. Weimer, “Modeling Bug Report Quality,” Proc.
22nd IEEE/ACM Intl. Conf. Automated Software Engineering
(ASE ’07), Nov. 2007, pp. 34-43.

[19] G. Jeong, S. Kim, and T. Zimmermann, “Improving Bug Triage with
Tossing Graphs,” Proc. 17th ACM SIGSOFT Symp. Foundations of
Software Engineering (FSE ’09), Aug. 2009, pp. 111-120.

[20] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
Severity of a Reported Bug,” Proc. 7th IEEE Working Conf. Mining
Software Repositories (MSR ’10), May 2010, pp. 1-10.

[21] L. Lü, Y.-C. Zhang, C.H. Yeung, and T. Zhou, “Leaders in Social
Networks, the Delicious Case,” PLoS One, vol. 6, no. 6, Jun. 2011.

[22] Mozilla. http://mozilla.org/.
[23] T. Menzies and A. Marcus, “Automated Severity Assessment of

Software Defect Reports,” Proc. IEEE Conf. Software Maintenance
(ICSM ’08), Sept. 2008, pp. 346-355.

[24] A. Meneely and L. Williams, “Socio-Technical Developer Networks:
Should We Trust Our Measurements?,” Proc. 33rd Intl. Conf.
Software Engineering (ICSE ’11), May 2011, pp. 281-290.

[25] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting
Failures with Deverloper Networks and Social Network Analysis,”
Proc. 16th ACM SIGSOFT Intl. Symp. Foundations of Software
Engineering (FSE ’08), Nov. 2008, pp. 13-23.

[26] J.-W. Park, M.-W. Lee, J. Kim, S.-W. Hwang, and S. Kim,
“CosTriage: A Cost-Aware Triage Algorithm for Bug Reporting
Systems,” Proc. 25th Conf. Artificial Intelligence (AAAI ’11), Aug.
2011, pp. 139-144.

[27] M. Pinzger, N. Nagappan, and B. Murphy, “Can Developer-Module
Networks Predict Failures?,” Proc. 16th ACM SIGSOFT Intl. Symp.
Foundations of Software Engineering (FSE ’08), Nov. 2008, pp. 2-12.

[28] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
Duplicate Defect Reports Using Natural Language Processing,” Proc.
Intl. Conf. Software Engineering (ICSE ’07), May 2007, pp. 499-510.

[29] S. Rastkar, G.C. Murphy, and G. Murray, “Summarizing Software
Artifacts: A Case Study of Bug Reports,” Proc. 32nd Intl. Conf.
Software Engineering (ICSE ’10), May 2010, pp. 505-514.

[30] E. Shihab, A. Ihara, Y. Kamei, W.M. Ibrahim, M. Ohira, B. Adams,
A.E. Hassan, and K. Matsumoto, “Predicting Re-opened Bugs: A
Case Study on the Eclipse Project,” Proc. 17th Working Conf.
Reverse Engineering (WCRE ’10), Oct. 2010, pp. 249-258.

[31] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A Discriminative
Model Approach for Accurate Duplicate Bug Report Retrieval,” Proc.
32nd Intl. Conf. Software Engineering (ICSE ’10), May 2010, pp. 45-
54.

[32] A. Tamrawi, T.T. Nguyen, J.M. Al-Kofahi, and T.N. Nguyen,
“Fuzzy-Set and Cache-Based Approach for Bug Triaging,” Proc. 19th
ACM SIGSOFT Symp. Foundations of Software Engineering
(FSE ’11), Sept. 2011, pp. 365-375.

[33] I.H. Witten, E. Frank, and M.A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. Morgan Kaufmann,
Burlington, MA, 2011.

[34] T. Wolf, A. Schröter, D. Damian, and T. Nguyen, “Predicting Build
Failures Using Social Network Analysis on Developer
Communication,” Proc. 31st Intl. Conf. Software Engineering
(ICSE ’09), May 2009, pp. 1-11.

[35] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An Approach to
Detecting Duplicate Bug Reports Using Natural Language and
Execution Information,” Proc. 30th Intl. Conf. Software Engineering
(ICSE ’08), May 2008, pp. 461-470.

[36] J. Xiao and W. Afzal, “Search-based Resource Scheduling for Bug
Fixing Tasks,” Proc. 2nd Intl. Symp. Search Based Software
Engineering (SSBSE ’10), Sept. 2010, pp. 133-142.

[37] J. Xuan, H. Jiang, Z. Ren, Z. Luo, “Solving the Large Scale Next
Release Problem with a Backbone Based Multilevel Algorithm,”
IEEE Trans. Software Engineering, preprint, doi:
10.1109/TSE.2011.92.

[38] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic Bug Triage
Using Semi-Supervised Text Classification,” Proc. 22th Intl. Conf.
Software Engineering & Knowledge Engineering (SEKE ’10), Jul.
2010, pp. 209-214.

[39] W. Zou, Y. Hu, J. Xuan, and H. Jiang. “Towards Training Set
Reduction for Bug Triage,” Proc. 35th Annual IEEE Intl. Computer
Software and Applications Conference (COMPSAC ’11), Jul. 2011,
pp. 576-581.

[40] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and
C. Weiss, “What Makes a Good Bug Report?,” IEEE Trans. Software
Engineering, vol. 36, no.5, Oct. 2010, pp. 618-643.

35

