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Abstract—Developers build all the software artifacts in de-
velopment. Existing work has studied the social behavior in 
software repositories. In one of the most important software 
repositories, a bug repository, developers create and update 
bug reports to support software development and maintenance. 
However, no prior work has considered the priorities of devel-
opers in bug repositories. In this paper, we address the prob-
lem of the developer prioritization, which aims to rank the 
contributions of developers. We mainly explore two aspects, 
namely modeling the developer prioritization in a bug reposi-
tory and assisting predictive tasks with our model. First, we 
model how to assign the priorities of developers based on a 
social network technique. Three problems are investigated, 
including the developer rankings in products, the evolution 
over time, and the tolerance of noisy comments. Second, we 
consider leveraging the developer prioritization to improve 
three predicted tasks in bug repositories, i.e., bug triage, sever-
ity identification, and reopened bug prediction. We empirically 
investigate the performance of our model and its applications 
in bug repositories of Eclipse and Mozilla. The results indicate 
that the developer prioritization can provide the knowledge of 
developer priorities to assist software tasks, especially the task 
of bug triage.  

Keywords-developer prioritization; software evolution; bug 
triage; severity identification; reopened bug prediction 

I.  INTRODUCTION 
A bug repository is a vital database in modern software 

development. Many software projects create and maintain 
bug repositories for storing and updating the information of 
problems or suggestions about projects [1]. The widely 
available bug repositories have provided an important plat-
form for investigating the quality of software [16]. With the 
growth in scale, developers in large projects must handle a 
large number of bugs in bug repositories. For example, from 
Oct. 2001 to Dec. 2010, the bug repository of an open source 
project, Eclipse [12], has recorded 333371 bugs, which are 
totally commented for 1544996 times by 34917 contributors 
around the world.  

In Peopleware, Demarco & Lister [11] have proposed 
“The major problems of our work are not so much technolo-
gical as sociological in nature”. All the software artifacts in 
software repositories are created, updated, and studied by 
people. The social behavior of people has a significant im-
pact on software development. Existing work has examined 
the social networks for some kinds of software repositories. 
For mailing list repositories, Bird et al. mine communication 
networks and discover the community structure from email 
archives [8]; Wolf et al. predict software build failures using 

social networks measures on the developer communication 
[34]. For change log repositories, Meneely et al. [25] and 
Pinzger et al. [27] build developer networks to predict soft-
ware failures. For bug repositories, Hong et al. have divided 
the developer network into several communities, which iden-
tify the sub-groups of developer communication [17]. How-
ever, no prior work has considered the priorities of develop-
ers in bug repositories and its applications.  

In this paper, we model the developer prioritization using 
a socio-technical approach to improve three predicting tasks 
centering on bug repositories. In contrast to dividing the de-
veloper network into communities in [17], we generate the 
developer prioritization by ranking all the participant devel-
opers of bug repositories. Based on our approach, we further 
study four Research Questions (RQs) with the experiments 
on two typical open source projects, namely Eclipse and 
Mozilla. We analyze the characteristics of developer prioriti-
zation to address the first three RQs, which study the devel-
oper priorities in products, the evolution over time, and the 
tolerance of noises, respectively; on the other hand, we ad-
dress the last RQ by leveraging the developer prioritization 
to improve three typical tasks of bug repositories, including 
bug triage, severity identification, and reopened bug predic-
tion. The experiments show that the developer prioritization 
is helpful to improve the predicting tasks in bug repositories. 
Especially, for bug triage, the average accuracy is improved 
up to 13% by combining the developer prioritization.  

The primary contributions of this paper are as follows: 
1. We identify the developer prioritization of bug reposi-

tories based on a socio-technical approach. In our work, each 
developer is mapped to a probability to indicate the priority 
in software development. To our knowledge, this is the first 
work for ranking developers with social networks in bug 
repositories.   

2. We present detailed analysis of our developer prioriti-
zation. In the analysis, we examine the characteristics of the 
developer prioritization in bug repositories, including the 
developer priorities in products, the evolution, and the toler-
ance of noises.  

3. We explore how to improve the tasks in bug reposito-
ries. We present the results of three typical tasks, i.e., im-
proving bug triage by mixing the developer priorities, identi-
fying bug severity by adding new features, and predicting 
reopened bugs by changing metrics. To our knowledge, this 
is the first work to evaluate the results of socio-techniques on 
bug-related tasks. 

The remainder of this paper is organized as follows. Sec-
tion II states the background. Section III shows the approach 
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to recognize the developer prioritization. In Section IV, we 
study the characteristics of developer prioritization on bug 
repositories. In Section V, we describe how to improve soft-
ware tasks by leveraging the developer prioritization. Section 
VI gives the threats to validity and Section VII shows the 
related work. Section VIII briefly summarizes this paper and 
presents the future work.  

II. BACKGROUND  
Bug repositories (also known as bug tracking systems) 

are deployed in software projects for the storage and man-
agement of bugs. A bug in bug repositories is recorded as a 
bug report, which is filled with the information of a software 
problem. Based on the bug reports, developers1

[40]
 can collect 

and reproduce bugs for bug fixing . In empirical software 
engineering, many software tasks are investigated on bug 
repositories, e.g., assigning bugs to correct developers to 
reduce the time of bug fixing  [1], [19], [32], summarizing a 
long bug report into a short abstract [29], detecting duplicate 
bugs to avoid repetitive operations [28], [35], [31], and cha-
racterizing factors of bug fixing [15].    

In bug repositories, a bug report belongs to a component 
of a product. A product consists of multiple components and 
some products may share a common component. For exam-
ple, Products firefox and core in Mozilla [22] use a common 
component, file handling. During the process of bug fixing, 
developers label a bug report with various statuses to denote 
a bug report as new, assigned, resolved, reopened, etc [18]. 
Once a bug report is created, any developer, who is interest-
ed in this bug, can make comments to communicate with 
relevant developers. In existing work on bug repositories, 
developers are always treated equally. However, the priority 
of a developer plays an important role in the tasks. For ex-
ample, an active developer may make more contributions on 
bug fixing than an inactive one; an experienced tester may 
find bugs with higher severities than a common end user. In 
this paper, we rank all the developers of bug repositories to 
assist the tasks around bug repositories. We denote the 
process of generating the developer priorities as developer 
prioritization.  

                                                           
1 In this paper, “developers” refers to the people who contribute to a bug 
repository. We follow existing work [17], [19] to use the term developers 
in a broad sense, including reporters, programmers, testers and active end 
users. We denote a developer with the user name in the email instead of the 
real name. 

We take two bug reports (bug IDs 261871 and 264696) 
in Eclipse as examples to illustrate the developer prioritiza-
tion. Both of these bugs are fixed bugs in Product Plug-in 
Development Environment (PDE). In Table I, we list the 
details of these two bugs. Each bug report is reported by one 
developer and commented by developers for 7 times. We 
find that these two bugs share two common developers, ca-
niszczyk and cwindatt. We illustrate the process of comment-
ing among the developers in Fig. 1. An arrow with a value in 
Fig. 1 is called a link.  

A question for us is how to prioritize the five developers 
for these two bug reports. This question is not easy to answer. 
Intuitively, both caniszczyk and cwindatt contribute to two 
bug reports while the other developers contribute to only one. 
On the other hand, ankur_sharma, cwindatt, and bcabe are 
very active since there are 3 links from each of them and 3 
links to each of them (also a self-link for cwindatt). In this 
paper, we aim to model the developer prioritization. Fur-
thermore, since developer factors are important for the me-
trics of software quality [40], another question is how to im-
prove the software quality with the developer prioritization. 
In our work, we want to extract knowledge from the devel-
oper priorities to assist software development. 

III. IDENTIFYING THE DEVELOPER PRIORITIZATION  
In this section, we model the developer prioritization by 

extending a social network technique. We present the 
framework of developer prioritization and propose four re-
search questions for further studies.  

A. Framework of Developer Prioritization 
Motivated by Fig. 1, we define the developer prioritiza-

tion in our work. 
Developer prioritization is a process to assign a priority 

to each developer in a bug repository and to rank all the con-
tributions of developers to assist software tasks.  

We extend a recent socio-technical approach proposed by 
Lü et al. [21] to identify the developer prioritization. In their 
work, a leadership network is proposed to investigate the 
social analysis between leaders and fans on an online book-
marking website. In our developer prioritization, we transfer 
their work to developers in a bug repository. We contribute 
in two extensions. First, we adapt the original binary weights 
of links to integer weights based on the number of comments. 

TABLE I.  TWO BUG REPORTS IN ECLIPSE 

Commenter 
order 

Bug ID 261871 Bug ID 264696 
Developer  Date & time Developer  Date & time 

Reporter olivier_thomann 09-01-21 12:39 cwindatt 09-02-12 10:02 
Commenter 1 cwindatt 09-01-21 12:54 cwindatt 09-03-12 16:25 
Commenter 2 bcabe 09-01-21 12:56 ankur_sharma 09-04-03 16:24 
Commenter 3 olivier_thomann 09-01-21 13:40 cwindatt 09-04-06 10:31 
Commenter 4 bcabe 09-01-21 14:08 ankur_sharma 09-04-14 17:01 
Commenter 5 olivier_thomann 09-01-21 14:18 caniszczyk 09-04-14 19:53 
Commenter 6 bcabe 09-01-21 15:43 ankur_sharma 09-04-15 06:49 
Commenter 7 caniszczyk 09-01-23 10:58 cwindatt 09-04-15 12:49 

 

 
Figure 1.  An illustration of the communication among developers. A 
link denotes a comment and the value of a link denotes the times of 
comments, e.g., the link with a value 1 from bcabe to caniszczyk means 
that caniszczyk has made one comment on bcabe (based on Commenters 
6 and 7 in bug ID 261871).  
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Second, we propose a topic-based prioritization by specify-
ing a product or a component.  

We present the brief framework of the developer prioriti-
zation in Algorithm 1. Given 𝑛𝑛 developers in a bug reposito-
ry, the goal of developer prioritization is to generate a score 
𝑆𝑆𝑖𝑖  for each developer 𝑑𝑑𝑖𝑖  and rank all the developers based on 
these scores. A weight 𝑤𝑤𝑖𝑖𝑖𝑖  denotes the number of all the 
comments in a link from a developer 𝑑𝑑𝑖𝑖  to 𝑑𝑑𝑗𝑗 . If no link ex-
ists between 𝑑𝑑𝑖𝑖  and 𝑑𝑑𝑗𝑗 , 𝑤𝑤𝑖𝑖𝑖𝑖 = 0. Specially, we remove all the 
self-links since we omit the influence of comments from a 
developer to himself/herself (e.g., the self-link of cwindatt 
in Fig. 1). To build a connected graph based on all the links, 
a virtual developer  𝑑𝑑0 is added to connect all the developers. 
Then, we add a bi-directional link between each original 
developer 𝑑𝑑𝑖𝑖  and 𝑑𝑑0 . The weights of this link, 𝑤𝑤𝑖𝑖0  and 𝑤𝑤0𝑖𝑖 , 
are set to 1 for each 𝑑𝑑𝑖𝑖  (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛). For each developer, let 
𝑜𝑜𝑖𝑖  (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛) denote the out-degree of 𝑑𝑑𝑖𝑖 . Note that both 
out-degrees and in-degrees are informative to study the so-
cial networks in bug repositories [17]. In our work, we use 
out-degrees to reflect the influences of both reporters and 
commenters.  

We consider that the developer prioritization is generated 
based on the changes of time series. We denote 𝑠𝑠𝑖𝑖(𝑡𝑡) as the 
score of developer 𝑑𝑑𝑖𝑖  (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛) at time 𝑡𝑡. Thus, we calcu-
late this score, 

𝑠𝑠𝑖𝑖(𝑡𝑡) = ∑ 𝑤𝑤𝑗𝑗𝑗𝑗 𝑠𝑠𝑗𝑗 (𝑡𝑡 − 1) 𝑜𝑜𝑗𝑗⁄𝑛𝑛
𝑗𝑗=0                         (1) 

The initial score 𝑠𝑠𝑖𝑖(0) = 1 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 and 𝑠𝑠0(0) = 0. 
Lü et al. have proved that the above model can converge 
after finite time [21]. Given the convergence time 𝑡𝑡𝑐𝑐 , we 
generate the final score of 𝑑𝑑𝑖𝑖  (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛),  

𝑆𝑆𝑖𝑖 = (𝑠𝑠𝑖𝑖(𝑡𝑡𝑐𝑐) + 𝑠𝑠0(𝑡𝑡𝑐𝑐)/𝑛𝑛) 𝑀𝑀⁄                         (2) 
where 𝑀𝑀  is a parameter for normalization and 𝑀𝑀 =

𝑠𝑠0(𝑡𝑡𝑐𝑐) 𝑛𝑛⁄ + 𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑖𝑖≤𝑛𝑛𝑠𝑠𝑖𝑖(𝑡𝑡𝑐𝑐). Thus, each developer in the bug 
repository is assigned with a score 𝑆𝑆𝑖𝑖  (0 < 𝑆𝑆𝑖𝑖 ≤ 1).  

We rank all the participant developers by their scores in 
descending order. In other words, a developer in a top rank 
owns a higher priority than a developer in a bottom rank. We 
apply the developer prioritization to the example in Fig. 1. 
The scores of the five developers are 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 _𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1.0 , 
𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.9012, 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.7956, 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.7274, and 
𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 _𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0.6763 , respectively; the developer an-
kur_sharma has the highest priority among these five de-
velopers.  

The scores of these five developers illustrate that Algo-
rithm 1 can quantify the priorities of developers. In contrast 

to the same value by measuring out-degrees (e.g., the same 
out-degree of ankur_sharma, cwindatt, and bcabe), Algo-
rithm 1 distinguishes the developers with the same out-
degree.  

Based on Algorithm 1, the developer prioritization can be 
adapted to a topic-based model. In a bug repository, we 
usually focus on a specified product or component of the 
project. A straightforward choice is to denote a topic with a 
product or a component. For example, given a product, we 
can generate the developer priorities based on the bug com-
ments related to this product. Product-based or component-
based developer prioritization is helpful to study the priori-
ties of developers in a specified part of the project.  

B. Research Questions 
We propose four Research Questions (RQs) to investi-

gate the developer prioritization. These four RQs are divided 
into two categories, namely the characteristic analysis and 
the applications. We answer these two categories of RQs in 
Section IV (RQ1-RQ3) and Section V (RQ4), respectively.  

RQ1. Does the developer prioritization for the whole 
project differ from the one for a product?  

RQ2. How does the developer prioritization evolve over 
time?  

RQ3. Is the developer prioritization tolerant to noisy 
comments? 

To analyze the characteristics of the developer prioritiza-
tion, in RQ1, we study the differences of the developer pri-
oritization between the products and the whole project; in 
RQ2, we study the evolution of the developer prioritization 
over time; in RQ3, we examine the tolerance of noises for 
the developer prioritization. 

RQ4. Can we use the developer prioritization to assist 
the existing tasks in bug repositories?  

An important problem is to explore the applications of 
the developer prioritization. In RQ4, we investigate how to 
incorporate the developer prioritization to improve typical 
tasks in bug repositories.  

IV. ANALYZING THE DEVELOPER PRIORITIZATION 
To explore the answers to the above four RQs, we con-

duct experiments on bug repositories of two open source 
projects, Eclipse and Mozilla. In this section, we present the 
details of the data collection and investigate the answers to 
RQ1 - RQ3.  

A. Data Collection 
We analyze the characteristics of the developer prioritiza-

tion based on bug repositories of Eclipse and Mozilla. These 
two projects have attracted wide interests since both of them 
are large scale and open source projects. In our work, we 

Algorithm 1. Framework of Developer Prioritization 

Input:    developer 𝑑𝑑𝑖𝑖  (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛), links among 𝑑𝑑𝑖𝑖  
Output: final score 𝑆𝑆𝑖𝑖  for each developer 𝑑𝑑𝑖𝑖  
1 add a virtual developer 𝑑𝑑0 and add bi-directional links with 𝑑𝑑0; 
2 set initial scores 𝑠𝑠𝑖𝑖(0) = 1 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) and 𝑠𝑠0(0) = 0; 
3 for 𝑡𝑡 = 1 to 𝑡𝑡𝑐𝑐  do    // 𝑡𝑡𝑐𝑐  is the time for convergence 
4 calculate the score of each 𝑑𝑑𝑖𝑖  (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛) at time 𝑡𝑡 with (1); 
5 calculate the final score of each 𝑑𝑑𝑖𝑖  (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) with (2). 
  

TABLE II.  SCALES OF DATA SETS 

Projects #Bug reports #Developers #Comments #Products #Components Period 

Eclipse 332142 34917 1544996 160 835 01-10-10  
to 10-12-31 

Mozilla 599870 146500 4543146 58 782 98-04-07  
to 10-12-31 
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collect all the bug reports before 2011, i.e., bugs 1-333371 in 
Eclipse and bugs 1-662320 in Mozilla. The details of our 
data sets are listed in Table II. Note that the number of bug 
reports does not equal to the range of bug IDs since some 
bug reports are removed in development (e.g., bug 5315 in 
Eclipse) or not anonymously accessible (e.g., bug 400020 in 
Mozilla).  

For each bug report, we extract the bug ID, the reporter, 
the fixer, the summary, the description, the creating time, 
and the comments. For each comment on a bug report, we 
extract the commenter and the commenting time. Since the 
fixer of a bug report is not always correctly labeled, the heu-
ristics in [1] are used to recognize the correct fixers in bug 
repositories. In this section, we mainly focus on the com-
ments of bug reports while in Section V, we will further 
study the texts of bug reports, e.g., the summary and the de-
scription.  

B. Answer to RQ1, Developer Prioritization in Products 
 Most open source projects consist of multiple products, 

each of which can be viewed as a sub-project for a set of 
individual requirements. In practice, a developer can partici-
pate in multiple products since the experience from one 
product may guide the development of another one. In this 
sub-section, we examine the changes of developer prioritiza-
tion between the whole project and its products.  

Before studying the developer prioritization for products, 
we first illustrate the developer rankings in the whole 
projects in Fig. 2. Three indicators of developers are used, 
namely the rank in the developer prioritization, the out-
degree in a bug repository, and the number of fixed bugs. We 
choose the out-degree as an indicator since the developer 
prioritization is constructed based on the out-degrees of de-

velopers (in Algorithm 1). Note that since not all the bugs are 
fixed in bug repositories, we only count the number of fixed 
bugs based on bug reports with the resolution “fixed” to 
simplify the statistics.   

In Fig. 2, a developer with a large out-degree leads to a 
high priority in developer rankings. Moreover, most of de-
velopers with high priorities have fixed a large amount of 
bugs, e.g., most of the largest circles for developers (who 
have fixed over 1500 bugs) lie in top 40 ranks. We can ob-
serve that the curve of Eclipse is not as stable as that of Mo-
zilla. In Eclipse, most of the out-degrees are over 2000. In 
both Eclipse and Mozilla, there are some developers who are 
dominant in both the priority and the number of fixed bugs, 
i.e., top 2 developers in Eclipse and top 4 developers in Mo-
zilla. These dominant developers may be the experienced 
experts in software development [2]. Note that some devel-
opers, who have only fixed a small number of bugs, also 
have high priorities, e.g., a developer in Mozilla is ranked in 
top 30 and has fixed less than 500 bugs. This fact is caused 
by the different duties of developers, e.g., an active develop-
er may be not a fixer but a tester.    

To observe the differences of developer prioritization be-
tween the whole project and its products, we show the ranks 
in 10 products for 5 developers in Fig. 3, who are ranked as 
the top 5 in the whole project (i.e., top 5 developers in Fig. 2). 
The curves for most developers have the similar trend, e.g., 
in Mozilla, the 5 developers have high priorities in Product 
core and have low priorities in Product calendar. An excep-
tion is the rank for Product wtp source editing in Eclipse, 
which widely distributes between 1 and 1000. Moreover, a 
top developer in the whole project may contribute little to a 
product or not participate in a product, e.g., in Eclipse, the 
developer john_arthorne has ranked around 900 in Product 
birt and the developer darin.eclipse has not contributed to 
birt.  

 
(a) Eclipse 

 
(b) Mozilla 

Figure 2.  Out-degrees for top 100 developers. The diameter of a circle 
denotes the number of bug reports for a developer. For example, the 
smallest circles denote developers who have fixed less than 500 bugs. 
Note that the vertical axis is on a log scale. 

  
(a) Eclipse (b) Mozilla 

Figure 3.  Ranks in 10 active products for top 5 developers in the whole 
project. For each project, the selected products are 10 products, which are 
contributed by most developers. In horizontal axis, the number following 
with a product name denotes the number of participant developers. Note 
that values in the vertical axis are in reverse order. 
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Answer to RQ1. The developer prioritization in products 
differs from that in the whole project. Specially, certain top 
developers in the whole project may contribute little or noth-
ing to a product. Among the participated products, top de-
velopers contribute much to most of products.  

C. Answer to RQ2, Evolution of Developer Prioritization 
For a large scale software product, personnel changes are 

common in development. An active developer may be inac-
tive in a period, or even retire [10]. In this sub-section, we 
investigate the evolution of the developer prioritization over 
time.  

Based on Table II, Eclipse has been developed for over 9 
years and Mozilla has been for over 12 years. To investigate 
the evolution, we select bug reports in 9 continuous years 
from Jan. 2002 to Dec. 2010 (since Eclipse is started from 
Oct. 2001). We choose half a year as the unit time by follow-
ing [17]. Thus, the time for each project is divided into 18 
periods. We denote the first half of a year with “f” and the 
second half of a year with “s”. For each unit time, we gener-
ate the developer prioritization in the whole projects and 
analyze the evolution of leading developers over time.  

We illustrate the changes of top developers in Fig. 4. To 
simplify the expressions, we denote the developers who are 
ranked in top 1000 in the whole project as leaders. Given a 
period, a developer is called an old leader or a new leader, if 
he or she is a leader in the last period or not, respectively. As 
shown in Fig. 4, the ratios in Mozilla are more stable than 
those in Eclipse. Moreover, for both projects, the changes 
after 2005 are stable. In Eclipse, the ratio of new developers 
who are also leaders is over 20% in each unit time. From 
2002s to 2006s, the ratio of old developers who are also old 
leaders increases with time. In Mozilla, the ratio of new de-
velopers who are leaders is less than 20%.  

In both Eclipse and Mozilla, the developer prioritization 
changes over time. We list two possible reasons for this fact. 

One is that the developer prioritization always changes be-
cause of the complexity of such large projects; the other is 
the unit time in our experiments is not short enough to rec-
ognize the fixed developer prioritization. A further study is 
needed to explore the appropriate unit time to model un-
changed developer prioritization in projects.  

Answer to RQ2. The developer prioritization evolves 
over time. A new developer can join the projects and become 
a developer with high priorities.   

D. Answer to RQ3, Tolerance of Noisy Comments 
The process of fixing and localizing bugs suffers from 

the bad quality of bug reports [18]. Noises in bug reports are 
common in bug repertories. For example, in the bug report 
with ID 1 of Eclipse, Comment 45 is just a test of a user ac-
count, which has nothing to do with the content of the bug. 
Since the developer prioritization is built based on the bug 
comments, we investigate whether the developer prioritiza-
tion is sensitive to noisy bug comments.  

Due to the lack of existing method to identify noisy 
comments, we label noisy comments with a heuristic. We 
consider two types of comments as noises, namely the com-
ments by inexperienced developers and the comments writ-
ten in very few words. Note that not all the comments in 
these two types are noisy, e.g., Comment 2 of Bug 250031 in 
Eclipse, only containing a full stop, can be viewed as a noisy 
comment while Comment 2 of Bug 250033, only containing 
a word “verified”, is a useful comment. In this paper, we 
directly treat the two types of bug reports as noisy comments 
without further identification. In Table III, we present the 
ratios of developers and comments for the data sets, which 
are generated by removing two types of comments. The sev-
en columns denote three data sets by removing comments of 

 
(a) Eclipse 

 
(b) Mozilla 

Figure 4.  Percentage for developers and leaders over time. The leaders 
(top 1000 developers) in each unit time is considered. The ratio of a new 
developer who is a leader, the ratio of an old developer who is a leader, 
and the ratio of an old developer who is new as a leader are labeled in 
black, light gray, and dark gray, respectively.  

  
(a) Eclipse (b) Mozilla 

Figure 5.  Changes for the ranks of top 10 developers among the original 
data set and new data sets after removing noises. The selected developers 
are top 10 developers in the original data set. 

TABLE III.  RATIOS OF DEVELOPERS AND COMMENTS IN DATA SETS 

Project Ratio >15  
comments 

>10  
comments 

>5  
comments Original >3  

words 
>6  

words 
>9  

words 

Eclipse 
Developer (%) 81.24 81.47 82.51 100.00 99.61 98.48 97.02 
Comment (%) 95.55 96.46 97.95 100.00 94.14 81.84 71.77 

Mozilla 
Developer (%) 79.42 79.67 80.81 100.00 99.80 99.28 98.38 
Comment (%) 94.77 95.70 97.29 100.00 95.92 88.37 80.78 
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inexperienced developers (5, 10, and 15), the original data 
set, and three data sets by removing comments written in few 
words (3, 6, and 9).  

We illustrate the changes of the developer prioritization 
in Fig. 5. We can find that our approach for the developer 
prioritization is tolerant to noisy comments. The change 
among each data set is inconspicuous. This fact coincides 
with our expectation since we always focus on the develop-
ers with high priorities, who contribute many comments to 
bug repositories. The noisy comments removed in our expe-
riments only affect the developers with few comments.  

Answer to RQ3. The developer prioritization in our 
work is insensitive to noisy comments. Therefore, the devel-
oper prioritization can be used to handle the real data sets, 
which include noisy bug comments.  

V. LEVERAGING THE DEVELOPER PRIORITIZATION 
In this section, we explore the results of leveraging the 

developer prioritization to assist the tasks in bug repositories. 
We answer RQ4 by examining the effects on three typical 
tasks, i.e., bug triage, severity identification, and reopened 
bug prediction. All these tasks have been addressed to im-
prove the quality of software development. We select such 
three tasks since they cover various aspects of predictive 
tasks. In details, bug triage [1] is a multiple-class task based 
on bug repositories; severity identification [20] is a binary-
class task based on bug repositories; and reopened bug pre-
diction [30] is a binary-class task based on both bug reposito-
ries and change log repositories. 

In this section, we combine the input or the output of a 
task with developer priorities obtained by the developer pri-
oritization. By combining with the input, we add new fea-
tures to the predictive model while by combining with the 
output, we update the results of a task. In Fig. 6, we briefly 
summarize the process for improving the results of the three 
tasks by combining the developer priorities.  

A. Bug Triage 
Bug triage is a typical problem in software maintenance, 

which aims to predict a correct developer for a new-coming 

bug [1]. Traditionally, a human developer (also called triager) 
assigns new bugs to candidate developers. Automatic ap-
proaches for bug triage have been developed to reduce time 
and labor cost. Most of existing work models bug triage as 
text classification and improves the accuracy of bug triage 
based on the knowledge from bug repositories [1], [19], [38], 
[32].  

In this paper, we consider improving bug triage with the 
developer prioritization obtained from bug repositories. For a 
predicted list of developers by a classifier, we rank these 
developers by the priorities. Thus, the developer prioritiza-
tion is used to discriminate the developers with similar prob-
abilities in the prediction.  

 We evaluate the results of bug triage with the incremen-
tal learning framework, in which we chronologically sort all 
the bug reports and divide these bug reports into 11 folds [6]. 
Thus, we perform experiments in 10 rounds. In each round, 
we generate the developer prioritization from the training set 
and combine the developer priorities with the predicted re-
sults of the classifiers. In Fig. 7, we present the evaluation 
framework in our work.  

We validate our approach on the bugs from 200001 to 
300000 for Eclipse and bugs from 400001 to 500000 for 
Mozilla. We follow the existing work [1], [9] to remove the 
non-fixed bug reports (only bug reports with the resolution 
“fixed” are left) and inactive developers (in our work, devel-
opers who have fixed less than 50 bugs are removed). As a 
result, 49762 bug reports of Eclipse and 30609 bug reports of 
Mozilla are left as data sets. For each bug report, the title and 
the description are extracted as an input text while the devel-
oper who has fixed this bug is extracted as a label for the 
classifier. We convert the bug reports into vector space mod-
el by tokenizing the sentences into terms. We perform the 
techniques of removing stop words, stemming, and tf-idf (a 
weighted term-frequency approach [33]) to generate the final 
data sets. We evaluate the experiments with the accuracy of 
top-k predicted developers since a recommendation list is 
always employed [2]. The accuracy is calculated as 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 = # 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  

# 𝑎𝑎𝑎𝑎𝑎𝑎  𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 based on a recommendation 

list with size k. We employ two typical classifiers, i.e., Naive 
Bayes (NB) and Supporting Vector Machine (SVM). These 
classifiers are implemented by Weka [33].  

 
Figure 6.  Leveraging the developer prioritization to predict tasks around 
bug repositories. We use the developer prioritization to assist three tasks. A 
circle denotes an action of predicting.  

 
Figure 7.  Bug triage combined with the developer prioritization based 
on the incremental learning. In Round r, the first r folds are used for 
training a classifier and generating the developer prioritization while the 
(r+1)th fold is used for testing. The developer prioritization is combined 
with the result of testing to form a new developer list.  
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In the following of this sub-section, we present the expe-
rimental results on bug triage. To obtain a high accuracy, we 
examine several ways to generate the developer prioritization 
from bug comments in training sets. We consider this prob-
lem on two dimensions, namely the source and the time pe-
riod of developer prioritization. On one hand, in RQ1, we 
have presented that the developer prioritization changes in 
different products. Thus, we generate the developer prioriti-
zation based on products, components, and products & com-
ponents, respectively. On the other hand, in RQ2, we have 
verified that the developer prioritization in two close periods 
can be very similar. Thus, we consider two kinds of time 
periods for building the developer prioritization, i.e., the ac-
cumulative folds in the training set and the latest fold in the 

training set. Taken Round 2 in Fig. 7 as an example, Folds 1 
and 2 are used to build the developer prioritization by choos-
ing the accumulative folds while only the Fold 2 is used by 
choosing the last fold.  

To improve bug triage, we combine the product-based 
and the component-based developer prioritization with the 
predicted results of classifiers. Given a new bug report, we 
extract its product and its component. We combine the prob-
abilities in prediction with the developer priorities, which 
match its product and its component. Formally, given a new 
bug report 𝐵𝐵, its product 𝑝𝑝, and its component 𝑐𝑐, the final 
score is 𝐹𝐹𝑖𝑖 = 𝑃𝑃𝑖𝑖 + (𝑆𝑆𝑖𝑖

𝑝𝑝 + 𝑆𝑆𝑖𝑖𝑐𝑐)/𝑀𝑀𝑠𝑠, where 𝑃𝑃𝑖𝑖  is the probability 
predicted for each developer 𝑑𝑑𝑖𝑖  by a classifier, 𝑆𝑆𝑖𝑖

𝑝𝑝  is the 
score in 𝑝𝑝-based developer prioritization, 𝑆𝑆𝑖𝑖𝑐𝑐  is the score in 𝑐𝑐-
based developer prioritization, 𝑀𝑀𝑠𝑠 is the maximum value in 
𝑛𝑛 developers for normalization (𝑀𝑀𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑖𝑖≤𝑛𝑛(𝑆𝑆𝑖𝑖

𝑝𝑝 + 𝑆𝑆𝑖𝑖𝑐𝑐)). 
The score 𝑆𝑆𝑖𝑖

𝑝𝑝  or 𝑆𝑆𝑖𝑖𝑐𝑐  is set to zero if a developer never appears 
in a product or a component. Then, we rank the developers 
by these final scores and select developers with highest 
scores as the final results. To obtain the rankings of top-k 
developers for a bug report, we use a classifier to predict 2𝑘𝑘 
developers and rank these developers by the combined final 
scores. Then, top-k developers in the new rankings are se-
lected as the final predicted results. In our work, we examine 
the results of top-5 developers.  

In Fig. 8, we present the accuracy of the top-1 developer 
in each round. In both Eclipse and Mozilla, the approaches 
combined with the developer prioritization can obtain higher 
accuracy than directly using SVM. Most of the results based 
on the latest fold are better than those based on the accumu-
lative folds. As a result, we observe that the recent changes 
of developers can be more helpful than the accumulative 

  
(a) Eclipse (b) Mozilla 

Figure 8.  Accuracy for the top-1 predicted developer in 10-round 
incremental learning. SVM denotes the accuracy only based on the 
classifier, P and C denote the approach combining with the developer 
prioritization based on products and components, respectively. A and L 
denotes the approach based on the developer proritization, which is 
extracted from the accumulative folds and the latest fold in the training set, 
respectively.   
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TABLE IV.  PREFORMANCE OF BUG TRIAGE ON ECLIPSE AND MOZILLA 

Project Classifier Size Approach Accuracy in Each Round (%) Average 
Accuracy Improvement 1 2 3 4 5 6 7 8 9 10 

Eclipse 

SVM 

Top 1 SVM 15.12 17.04 20.40 21.37 19.50 19.47 20.71 23.36 23.08 22.29 20.24 10.89 
SVM+DP 22.61 25.86 29.02 34.35 32.01 29.29 32.23 34.20 34.82 36.86 31.12 

Top 3 SVM 27.41 30.70 34.62 38.20 33.60 34.02 37.93 40.27 39.16 40.48 35.64 12.94 
SVM+DP 38.35 42.29 46.84 52.30 47.02 45.51 52.06 53.51 52.27 55.60 48.57 

Top 5 SVM 32.65 36.49 43.41 45.87 42.31 42.44 46.97 48.41 48.42 49.13 43.61 9.49 
SVM+DP 40.16 45.34 52.12 55.86 51.15 51.17 57.67 59.02 58.41 60.05 53.10 

NB 

Top 1 NB 27.37 28.43 28.14 30.97 29.00 28.03 30.35 28.63 29.01 30.78 29.07 2.88 
NB+DP 30.57 32.12 31.28 33.47 32.07 30.55 32.96 31.43 31.77 33.23 31.94 

Top 3 NB 33.73 35.41 34.13 36.32 34.33 33.05 36.16 34.84 34.27 36.15 34.84 1.88 
NB+DP 35.94 37.82 36.54 38.28 36.38 35.01 37.80 36.36 35.44 37.59 36.72 

Top 5 NB 34.88 36.60 35.10 37.25 35.19 33.73 36.91 35.74 34.78 36.97 35.72 1.17 
NB+DP 36.16 38.00 36.58 38.40 36.63 35.12 37.93 36.43 35.66 37.92 36.88 

Mozilla 

SVM 

Top 1 SVM 14.66 16.24 12.83 14.41 13.69 14.95 15.20 17.36 21.39 22.39 16.31 13.64 
SVM+DP 26.91 26.84 27.78 29.39 26.41 25.01 29.08 32.96 38.43 36.74 29.95 

Top 3 SVM 29.93 37.30 34.78 33.92 34.85 33.24 36.56 39.97 44.54 45.40 37.05 12.87 
SVM+DP 42.33 48.87 45.60 47.75 44.70 43.98 50.29 55.46 61.04 59.13 49.91 

Top 5 SVM 37.26 47.00 44.84 45.06 44.66 43.41 47.41 52.23 56.69 57.40 47.60 9.38 
SVM+DP 46.78 54.76 53.47 54.19 52.61 53.58 58.30 62.44 67.61 66.03 56.98 

NB 

Top 1 NB 27.60 25.04 24.54 24.69 24.90 24.25 27.64 29.19 31.24 32.14 27.12 2.30 
NB+DP 30.08 27.56 26.59 26.88 26.70 26.52 29.91 31.13 34.15 34.76 29.43 

Top 3 NB 33.78 32.20 30.65 30.08 31.55 31.76 34.69 35.73 37.78 39.25 33.75 2.36 
NB+DP 36.87 34.75 33.24 32.45 33.45 33.96 36.99 37.28 40.22 41.91 36.11 

Top 5 NB 35.14 33.96 31.98 31.15 32.84 33.35 35.69 36.77 39.18 40.80 35.09 1.56 
NB+DP 37.15 34.96 33.74 32.81 34.32 34.93 37.53 37.81 40.83 42.38 36.65 
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changes. This observation coincides with the existing work 
[1], [6] that the latest activity of a developer is representative. 
Among seven approaches in each sub-figure of Fig. 8, the 
approach combined with the developer prioritization based 
on products and components has the highest accuracy. In the 
rest of this sub-section, we choose such combination as the 
approach in the experiments.  

In Table IV, we present the results of bug triage by com-
bining the developer priorities with the output of the classifi-
er in Eclipse and Mozilla. SVM+DP and NB+DP denote the 
results, which are ranked by combining the developer priori-
tization with the output of SVM and NB, respectively. We 
can find that for both of SVM and NB, the accuracy is im-
proved when combining with the developer prioritization. 
The average improvement for SVM is around 10% while the 
average improvement for NB is only about 2%. The reason 
for such results is that the combination with the developer 
prioritization is based on the probability predicted by clas-
sifiers and SVM has stronger ability on discriminating dif-
ferent classes than NB. Thus, for NB, the ranks of developers 
may not change too much by combining the developer priori-
tization. As shown in Table IV, the improvement for the top 
1 is larger than that for top 5. The improvement for SVM in 
some rounds are over 15%, e.g., Round 10 with top 3 devel-
opers in Eclipse and Round 9 with top 3 in Mozilla.  

B. Severity Identification 
Since the number of daily bugs is large to handle, new 

bugs in bug repositories are divided into different severities 
to process for different goals. Existing work (robotic severity 
[23], security severity [14], and critical severity [20]) has 
identified bug severities with predictive techniques.  

In this sub-section, we address the critical severity prob-
lem. Lamkanfi et al. [20] predict whether a new bug is severe 
by adapting a text classification technique. In their work, a 
set of bug reports, including non-severe or severe ones, are 
divided into a training set and a test set. The 10-fold cross 
validation [33] is used to evaluate the results of classification. 
For a bug report with a self-reported severity, trivial or mi-
nor, is considered as a non-severe bug while major, critical, 
or blocker is considered as a severe one. Given a new bug 
report, the title of this bug is extracted to build the vector 
space model. The stop word removal, stemming techniques 
are performed (note that no tf-idf technique is used). Based 
on the vector space of training sets, Naive Bayes (NB) clas-
sifier is employed to identify whether a bug is severe or not.  

In existing work by Lamkanfi et al. [20], the severity of a 
bug is predicted by the numeric vector, which is converted 
from the bug title. We consider adding the factors of devel-
opers to predict severities. For new bugs, the priorities of 

reporters may provide more information to identify the se-
verity, e.g., a reporter with a high priority may pay more 
attentions to the severe bugs. Therefore, for each bug report, 
we add two features from the developer prioritization to the 
original numeric vectors. These two features are two priority 
scores of reporters based on the products and components, 
respectively. Then the predictive vector has two more nu-
meric features. Since values in predictive vectors may be 
imbalance, we normalize all the features to the range from 0 
to 1 for each training set. 

In our work, we extract the data sets from bug reposito-
ries of Eclipse (bugs 1-300000) and Mozilla (bugs 300001-
600000). For each project, we select severe and non-severe 
bugs in three components in accordance with [20]. These 
data sets are presented in Table V. We evaluate the severity 
identification with precision, recall, and F-measure.  

We present the experimental results in Table VI. For 
each component, the first row denotes the classification 
based on the original vectors, which are extracted from bug 
titles, while the second row denotes the classification based 
on the mixed vectors, which are formed by adding two de-
veloper scores. A value in bold denotes a result, which is 
over 1% better than the other result on the same component.   

As shown in Table VI, the prediction based on the mixed 
vectors can obtain better precision, recall, and F-measure on 
bugs in Mozilla while the difference of results in Eclipse is 
not significant. One possible reason for these results is the 
number of original numeric features is large and the effects 
of two new dimensions are not obvious to the predictive 
model.  

C. Reopened Bug Prediction 
Reopened bug prediction aims to identify a bug report, 

which will be incorrectly fixed in the future. To our know-
ledge, only Shihab et al. [30] have proposed the method to 
predict a reopened bug. In their work, they extract 22 factors 
in 4 dimensions to build the predictive model based on Ada-
Boost [33]. Among the 4 dimensions of factors, one dimen-
sion is called “people dimension”, which consists of 4 factors 
about the developer information of a bug report, i.e., the re-
porter name, the fixer name, the reporter experience, and the 
fixer experience.  

In this paper, we do not discuss the improvement of the 
predictive model of reopened bug prediction. We only con-

TABLE V.  NUMBER OF BUGS FOR EACH SEVERITY 

Project Product: Component # Non-severe bugs # Severe bugs 

Eclipse 
Platform: UI 1425 3284 

JDT: UI 1425 1533 
JDT: Text 816 558 

Mozilla 
Core: Layout 255 929 

Camino: Bookmarks 62 40 
Firefox: General 2658 10124 

 

TABLE VI.  PERFORMANCE ON SEVERITY IDENTIFICATION 

Project Product: Component 
Non-severe bugs (%) Severe bugs (%) 

Precision Recall F-measure Precision Recall F-measure 

Eclipse 

Platform: UI 49.6  53.6  51.6  79.1  76.4  77.8  
50.1  57.4  53.5  80.3  75.2  77.6  

JDT: UI 
61.9  66.1  63.9  66.3  62.1  64.2  
62.0  66.3  64.1  66.6  62.3  64.4 

JDT: Text 78.2  76.5  77.3  66.7  68.8  67.7 
78.0  76.7  77.3  66.7  68.3  67.5  

Mozilla 

Core: Layout 45.5  65.1  53.5  89.1  78.6  83.5 
45.6  71.4  55.7  90.7  76.6  83.1  

Camino: Bookmarks 
76.6  79.0  77.8  65.8  62.5  64.1  
77.6  83.9  80.6  71.4  62.5  66.7  

Firefox: General 42.8  50.6  46.4  86.4  82.2  84.3  
46.2  36.4  40.7  84.2  88.9  86.5  
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sider whether our developer prioritization can provide simi-
lar factors to this model. We evaluate the experiments with 
the 10-fold cross validation on the benchmark data set in [30]. 
This data set consists of 1530 bugs (246 are reopened bugs 
and 1284 are not), which are extracted from bugs 1-300000 
in Eclipse. We generate the developer prioritization (without 
specifying a product or a component) on the bug comments 
of bugs 1-300000 and extract the scores of reporters and fix-
ers, who are specified in the data set. Note that we have not 
conducted experiments on Mozilla since only the benchmark 
for Eclipse is shared in [30]. 

In the experiments, we add two factors to the people di-
mension, namely the reporter priority score and the fixer 
priority score. These 6 factors can be divided into three 
groups, i.e., name, experience, and priority. We list 4 combi-
nations of these three groups of factors in the column “factor” 
in Table VII (Exp. is short for the group of factors expe-
rience). We run the algorithm AdaBoost in [30] to examine 
the results.  

As shown in Table VII, by changing the original factors 
of name and experience with priority, the performance is 
improved. And the combination of all the three groups can 
provide the highest performance. We summarize the results 
in Table VII that the factors based on the developer prioriti-
zation can provide similar features to the model for predict-
ing reopened bugs and can slightly improve the existing re-
sults. Note that the improvement by adding the factors of 
priority scores is not significant. This fact suffers from two 
possible reasons. One is the small number of training set may 
limit the predictive ability of factors; the other is the existing 
results may be good enough and hard to improve.  

Answer to RQ4. By examining three typical tasks in bug 
repositories, we conclude that the developer prioritization is 
helpful to improve the results of these tasks, especially, the 
task of bug triage.  

VI. THREATS TO VALIDITY 

A. Building the Developer Prioritization  
In our work, we build the developer prioritization from 

bug comments in bug repositories. The developer rankings 
are obtained to denote the priorities of developers. Since 
there is no real ranking of developers in software projects, it 
is hard to validate whether our obtained rankings are coinci-
dent with the real collaboration in development. To address 
this problem, a good way is to conduct a case study to ex-
amine the differences between the developer prioritization 
and the collaboration in development. Moreover, the devel-
oper prioritization in our work can enhance simple measures, 
e.g., distinguishing the developers with the same out-degree. 

An experiment should be conducted to compare the priorities 
between our work and simply measuring out-degrees.  

Besides the developer prioritization for a whole project, 
we have also proposed product-based and component-based 
developer prioritization in our work. We extract the products 
and components from the self-reported terms of bug reports. 
However, such terms of products or components may mis-
match the real terms since reporters lack experiences to iden-
tify the correct products or components [40]. To completely 
avoid such mismatch, a technique for identifying the correct 
product and components should be developed.  

B. Analysis of Developer Prioritization 
In Section IV, we explore the evolution of developer pri-

oritization over time. The time period is divided into several 
half years to study the changes in the process of development. 
Besides the time-based evolution, version-based evolution of 
the developer prioritization may provide more information. 
We do not investigate version-based evolution in our work 
since the bug reports in different versions are hard to collect. 
For example, among bugs 200001-300000, only 7450 bugs 
(7.45%) are identified with version information, which be-
long to 38 products.  

To analyze the noise tolerance of developer prioritization, 
we recognize noisy comments with a heuristic, which views 
the comments by inactive developers and the comments with 
few words as noises. Many of such comments consist of noi-
sy information, but some meaningful comments may also be 
viewed as noises, such as comments with only one word 
“fixed” or “verified”. To exactly recognize noisy comments, 
manually labeling is more helpful than a heuristic.   

C. Assisting Software Tasks  
In this paper, we show that the developer prioritization is 

effective to improve the tasks in bug repositories based on 
the empirical evaluation. The developer priorities can add 
more information to the input features or update the output of 
classifiers. However, further questions may be proposed, for 
example, what is the internal relationship between the devel-
oper prioritization and the goal of a task?  And why is the 
social behavior of developers helpful? These questions are 
not easy to answer. In this paper, the developer prioritization 
can build a bridge from bug repositories to predictive tasks. 
For further work, a systematical case study can provide more 
information to explore the correlation between the developer 
prioritization and the predictive tasks. 

VII. RELATED WORK  

A. Social Network Analysis in Software Repositories 
Bird et al. [3] mine social networks from email achieves 

and analyze the developer activity based on social network 
measures. Their later work [8] explores communities from 
the social networks, which are representative of the collabo-
ration of developer behavior. Wolf et al. [34] employ the 
team communication network to predict the failures of soft-
ware builds. In their work, the centrality measures in social 
networks are extracted as features in the predictive model.   

TABLE VII.  FACTORS ON REOPENED BUG PREDICTION IN ECLIPSE 

Factor Reopened bugs (%) Non-reopened bugs (%) Accuracy Precision Recall F-measure Precision Recall F-measure 
(Original)Name+Exp. 92.8  97.0  94.8  79.3  60.6  68.7  91.11  

Exp.+Priority 93.1  96.5  94.8  77.4  62.6  69.2  91.05  
Name+Priority 93.0  97.4  95.2  82.2  61.8  70.5  91.70  

Name+Exp.+Priority 93.1  97.4  95.2  82.4  62.6  71.1  91.83  
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Social networks have been proposed to improve the 
software failure prediction. To predict failures, Meneely et al. 
[25] construct developer networks on change log repositories 
and Pinzger et al. [27] build developer-module networks on 
binary repositories. Bird et al. [7] combine the topological 
properties with social networks and investigate multiple 
types of relationships to predict failures. Moreover, Betten-
burg & Hassan [4] study the impacts of socio-technical 
measures through the failure detection. Since the social tech-
niques are effective for indicating software failures, Meneely 
& Williams [24] empirically validate that the social network 
metrics can represent the collaboration relationship in soft-
ware development.  

By building a social networking service for developers, 
Begel et al. [5] introduce a Codebook framework to discover 
the inter-team coordination in development. They have con-
ducted two applications to evaluate the effectiveness of their 
framework.  

In bug repositories, Hong et al. [17] have examined the 
developer social networks in bug repositories. They discover 
the sub-communities of a developer network and investigate 
the evolution over time. In this paper, we also focus on the 
socio-technical analysis on bug repositories. In contrast to 
the community discovery in [17], we explore the developer 
prioritization in bug repositories. We analyze the developer 
rankings and improve three existing tasks in bug repositories. 

B. Bug Repositories 
In this paper, we investigate the developer prioritization 

in bug repositories. In existing work on bug repositories, 
Fischer et al. [13] explore the proximity of software features. 
In their work, bug report analysis is used to study and visual-
ize the relations between software features.   

The quality of bug reports is important for locating and 
fixing bugs. Hooimeijer & Weimer [18] present the first 
work to model the quality of bug reports. Bettenburg et al. [9] 
point out that duplicate bugs contain extra information for 
bug fixing, which are useful to improve bug triage. Zim-
mermann et al. [40] study the evidence for the mismatch 
between developer expectation and bug reports based on a 
systematic questionnaire survey. Xiao & Afzal [36] propose 
a search-based approach for the resource scheduling on bug 
fixing tasks. 

Most work on bug repositories treats developers and bugs 
separately. Our previous work [37] proposes an integrated 
view of developers and bug reports. We transfer the interac-
tions between developers and bug reports to requirements 
engineering to supplement the lack of open requirements.  

In this paper, we extract the developer prioritization in 
bug repositories. Besides the multiple aspects of analysis, we 
leverage the developer prioritization to predict software tasks. 

C. Predicting Tasks in Bug Repositories 
The goal of bug triage is to automatically assign a new 

bug to the correct developer to avoid the expensive cost of 
maintenance. Čubranić & Murphy [10] have proposed the 
first work of bug triage, which transforms bug triage to a text 
categorization problem. Anvik et al. [1] extend the above 
work with a recommendation list and multiple classifiers. 

Jeong et al. [19] and Bhattacharya & Neamtiu [6] propose a 
tossing graph based approach to improve bug triage with the 
previous assignment history of bug reports. Our previous 
work [38] proposes a semi-supervised learning approach to 
avoid the lack of qualified bug reports. Recent work by An-
vik & Murphy [2] investigates the effects of recommenders 
to assist bug triage for streamlining the development process. 
Other work also addresses the problem of bug triage, such as 
the training set reduction [39], the fuzzy-set and cache-based 
approach [32], and the cost-aware bug triage [26]. 

Severity identification is to detect the bug severities to 
guide the resource allocation and planning of bug fixing. To 
date, three types of severities are studied. Menzies & Macus 
[23] first propose a text mining approach to detect the 5-level 
robotic severity for bug reports in NASA databases. Gegick 
et al. [14] and Lamkanfi et al. [20] have further predicted the 
security severity and the critical severity of bug reports.  

Reopened bug prediction is to detect whether a bug is 
fixed in a correct way. Shihab et al. [30] study and predict 
reopened bugs on 22 factors in four dimensions, which are 
extracted from both bug repositories and source code reposi-
tories. In an empirical study on characterizing which bugs 
get fixed, Guo et al. [15] present that the times of reopenings 
is a factor to indicate whether a bug can be fixed.   

In this paper, we empirically evaluate whether the devel-
oper prioritization can improve the results of the above three 
tasks. Besides the three mentioned tasks, existing work im-
proves the software quality in bug repositories on other tasks. 
For example, Rastkar et al. [29] summarize long bug reports 
to avoid redundancies and noises in bug repositories; Rune-
son et al. [28], Wang et al. [35], and Sun et al. [31] detect 
duplicate bug reports to reduce the expense for handling 
bugs in large scale repositories.  

VIII. CONCLUSION AND FUTURE WORK 
In this paper, we model the developer prioritization in 

bug repositories by extending a socio-technical approach. 
We analyze three problems of the developer prioritization, 
namely the characteristics in products, the evolution, and the 
tolerance of noises. Based on the analysis, we investigate the 
ways to leverage the developer prioritization to improve 
three typical tasks in bug repositories. The results are studied 
on over 900000 bug reports in Eclipse and Mozilla.   

Our future work is to investigate a task-based developer 
prioritization in bug repositories to improve a specified task 
with the developer rankings. In contrast to the general model 
of the developer prioritization, we want to provide a model 
to add more knowledge to handle the problems in a specified 
task. For example, fixers of bug reports should be added 
more weights in the developer prioritization to improve bug 
triage.  
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