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Abstract—Driven by new software development processes and 

testing in clouds, system and integration testing nowadays tends 

to produce enormous number of alarms. Such test alarms lay an 

almost unbearable burden on software testing engineers who 

have to manually analyze the causes of these alarms. The causes 

are critical because they decide which stakeholders are 

responsible to fix the bugs detected during the testing. In this 

paper, we present a novel approach that aims to relieve the 

burden by automating the procedure. Our approach, called 

Cause Analysis Model, exploits information retrieval techniques 

to efficiently infer test alarm causes based on test logs. We have 

developed a prototype and evaluated our tool on two industrial 

datasets with more than 14,000 test alarms. Experiments on the 

two datasets show that our tool achieves an accuracy of 58.3% 

and 65.8%, respectively, which outperforms the baseline 

algorithms by up to 13.3%. Our algorithm is also extremely 

efficient, spending about 0.1s per cause analysis. Due to the 

attractive experimental results, our industrial partner, a leading 

information and communication technology company in the 

world, has deployed the tool and it achieves an average accuracy 

of 72% after two months of running, nearly three times more 

accurate than a previous strategy based on regular expressions. 

Keywords- software testing; system and integration testing; 

test alarm analysis; multiclass classification 

I.  INTRODUCTION 

System and Integration Testing (SIT) is necessary 
immediately after the integration of various software 
components. With increasing number of companies 
advocating to conduct continuous integration [32] by 
following modern software development practices such as 
DevOps [31], the frequency of SIT has significantly increased. 
Fortunately, emerging techniques such as testing in the cloud 
have dramatically improved the efficiency of such testing. For 
example, a cloud-based system is able to run 1,000 test scripts 
in less than 25 minutes. In the past the same amount of testing 
required 77 hours [33]. Since running test scripts has an 
average failure rate of approximately 5% [14], the frequent 
automated SIT produces tremendous number of test alarms 
that have to be analyzed by testers. 

There are various causes that may lead to test alarms, such 
as product code defect, test script defect and device anomaly. 
Each type of cause has its unique way to handle, including 
submitting bug reports to developers, correcting the test 
scripts and submitting exception messages to instrument 
suppliers. Therefore, the analysis of test alarms is critical as it 
determines who is responsible to fix the potential bugs. 

In order to figure out the causes, testers have to carefully 
read test logs [20], each of which may consist of hundreds of 
test steps and thousands of lines of text [4]. Considering the 
fact that thousands of test alarms may be produced per day for 
a production line with several similar products, as we have 
observed during collaboration with our industrial partner 
Huawei-Tech Inc., a leading information and communication 
technology company in the world, test alarm cause analysis 
lays an almost unbearable burden on testers and has become a 
bottleneck in SIT. Realizing the urgent need to alleviate the 
burden of cause analysis, our collaborators manually build 
regular expressions over the test logs to analyze test alarm 
causes. The accuracy of their approach is about 20%-30% on 
different projects.  

In this paper, we present a novel approach named Cause 
Analysis Model (CAM) that infers test alarm causes by 
analyzing test logs. The test logs, generated by test scripts, 
record important runtime information during testing. The 
basic idea of CAM is to detect the test logs of historical test 
alarms that may share the same causes with the new test logs. 
CAM first utilizes Natural Language Processing (NLP) 
techniques to partition test logs into terms. Next CAM selects 
partial historical test logs for further processing with function 
point filtering. Thirdly, CAM constructs attribute vectors 
based on test log terms. The cause of a new alarm is predicted 
according to the ranked similarity between a new test log and 
each historical one. Finally, CAM reports the causes along 
with the difference between the new and historical test logs. 
CAM is efficient as it is an information retrieval based 
algorithm without the overhead of training. 

In the experiments, we collect more than 14,000 test logs, 
forming two datasets, from two industrial projects at Huawei-
Tech Inc. CAM achieves accuracy rates of 58.3% and 65.8%, 
respectively, outperforming baseline algorithms by up to 
13.3%. For more than one-third of the testing days, the 
accuracy of CAM is over 80%. In addition, CAM is very 
efficient, taking on average about 0.1s per test alarm analysis 
with 4GB memory. After deploying CAM at Huawei-Tech 
Inc., it achieves an average accuracy of 72% after two months 
of running, which is nearly three times more accurate than 
their previous strategy based on regular expressions. 

In summary, this study makes the following contributions: 
(1) We propose a new approach to address the challenge 

of automatically analyzing the test alarm causes in SIT. 
(2) We construct two industrial datasets with more than 

14,000 test logs. The failure causes of these test alarms are 
manually labeled and verified by testers. 
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(3) We conduct a series of experiments to investigate the 
performance of our approach. Experimental results show that 
CAM is both effective and efficient. 

(4) We deploy and evaluate CAM at Huawei-Tech Inc. in 
real development scenario. 

This paper is structured as follows. In Section 2, we 
introduce the background of this study. We describe the 
overall framework of CAM in Section 3. The experimental 
setup and research questions are introduced in Section 4. We 
experiment to answer the research questions in Section 5. 
Section 6 and 7 show the threats to validity and related work, 
respectively. Finally, Section 8 concludes this paper. 

II. BACKGROUND 

In this section, we present relevant background regarding 
system and integration testing and the cause analysis problem. 

A. System and Integration Testing (SIT) 

SIT is performed immediately after various components 
are integrated to form an entire system. The system under test 
is more complex than those individual components considered 
in the unit testing.  Therefore, SIT uses a new set of test drivers 
for revalidation with black-box testing strategies [36].  

The function points are a set of functional requirements for 
a software project [46]. In SIT, testers play the role of users to 
work through a variety of scenarios for covering the required 
function points [45]. The function points of test scripts are 
predefined when testers develop test scripts [45]. For example, 
if a test script is designed to verify the function of “configure 
network proxy”, testers may add "NETCONF_PROXY 
_FUNC" as the function point of the test script. 

Test logs record the runtime information in software 
testing. In SIT, testers develop test scripts (also called test 
codes [34]) to check for system functions, performance, etc. 
Each test script contains a sequence of test steps with 
numerous logging statements. Test logs are generated by these 
logging statements when running test scripts. 

A test alarm is an alarm to warn the failure of a test script. 
Each test alarm is associated with a failure cause. Testers are 
responsible to analyze the causes of test alarms. 

B. Cause Analysis Process 

Cause analysis for test alarms is critical due to its effect on 
both testers and developers [4]. The overall analysis procedure 
is depicted in Fig. 1. In a software company, SIT is conducted 
over the code changes in each branch to reduce software bugs 
[4]. Before developers merge code changes into a trunk branch, 
testers select test scripts of some given function points to 
verify the correctness of these code changes (Fig. 1(1)). 
During the testing, test scripts automatically log important 
runtime information to form test logs. Code changes are 
merged into a trunk branch only if they pass all the test scripts. 
If a test script fails, testers are required to analyze the cause to 
the failure (Fig. 1(2)). 

Testers analyze failure causes by examining test logs (Fig. 
1(2)). After detecting failure causes, testers submit the test 
logs with the corresponding causes to the software repository 
for unified management (Fig. 1(3)). After that, different 
stakeholders, e.g., testers, developers, instrument suppliers, 
etc., have to resolve the failures depending on the types of the 

causes (Fig. 1(4)). If a cause indicates product code defect, 
testers need to submit a bug report to developers and request 
them to fix the bug. If it is a defect in test scripts, testers need 
to correct test scripts. For other causes, testers may either 
adjust the configuration files, or request instrument suppliers 
to diagnose the infrastructures, etc. The above process may 
repeat several times before code changes are merged into a 
trunk branch (Fig. 1(5)). 

C. Cause Analysis Problem 

As shown in Fig. 2, each test alarm (A) is associated with 
a test log (L) and its failure cause (C), which forms a triple 
〈𝐴, 𝐿, 𝐶〉. When a set of test scripts completes running, several 
〈𝐴, 𝐿, ? 〉𝑆 arise for analysis. Testers analyze the causes of test 
alarms with their test logs, and then continuously submit the 
〈𝐴, 𝐿, 𝐶〉𝑆 to the software repository along with the testing days.  

We represent 〈𝐴, 𝐿, 𝐶〉𝑆 for analysis as 〈𝐴, 𝐿, ? 〉𝑆𝑛𝑒𝑤
, and those 

in the software repository as 〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦
. Following this 

representation, the cause analysis problem is to predict C in 

〈𝐴, 𝐿, ? 〉𝑆𝑛𝑒𝑤
 with the assistance of 〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦

, which can be 

viewed as a multiclass classification problem due to the 

various failure causes (C) for test alarms. The multiclass 

classification problem aims to classify instances into one out 

of more than two classes. In this study, the new test logs of 

test alarms are instances for classifying, and their causes are 

the multiple classes. 
Despite previous studies [4] [34] attempt to classify test 

alarms into product code defect and non-product code defect, 
these techniques are not suitable for this problem, since they 
either require expensive costs to collect complex information in 
large integrated system [34] or need additional efforts to decide 
how to deal with each non-product code defect [4]. 

Test alarm (A) Test log (L) Failure cause (C) 

〈𝐴, 𝐿, 𝐶〉𝑆 

〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦
 

〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦
 

〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦
 

〈𝐴, 𝐿, ? 〉𝑆𝑛𝑒𝑤
 

Analyze 

C2 

〈𝐴, 𝐿, ? 〉𝑆𝑛𝑒𝑤
 

C1 

C𝑁 

predicted cause 

Figure 2. Cause analysis problem. 

Change Bug fix Changes Change 

Branches  

Build Build Build Build 

Product code 
defect 

Device 
anomaly 

Re-testing 5 

Select test scripts 1 

Analyze test alarms 
by test logs  

2 

Tester 

Find and 
submit causes 

3 

Handle failures 4 

Trunk branch  

Figure 1. Cause analysis process. 

 

Tester/ 
Developer/ 
Instrument 
supplier/… 

Software 

repository 

Software testing & Cloud computing 



D. Test Logs and Failure Causes 

We exhibit some examples of test logs and failure causes 
from the industrial projects at Huawei-Tech Inc. to better 
understand the cause analysis problem. The projects are 
launched to test the codes of two communication systems. 

1) Test Logs 

Logging is a conventional programming practice to record 
important runtime information [1]. In some open-source 
software, there is one line of logging code in less than 50 lines 
of code on average [2]. When testers develop test scripts, they 
also insert a mass of logging statements [3]. During the runs 
of test scripts, these logging statements record some critical 
information to test logs. 

Fig. 3 exhibits a snippet of test logs. Test logs in these 
projects are bilingual documents with English and Chinese 
terms. In practice, non-English speaking testers prefer adding 
some native terms, e.g., Chinese terms, to better understand 
test logs. Apart from the languages, test logs in these projects 
contain all the information that a test log needs [3].  

The contents of the industrial test logs can be summarized 
in four types, including test steps, echo messages, exception 
messages, and miscellaneous messages. 

A test step (segment 1) is a command or code snippet to 
display or verify some specific steps of the software under test. 
A test script contains a sequence of test steps, simulating the 
operations of a user to cover the required function points. 

An echo message (segments 2 and 3) is a feedback of the 
test step, which may contain output actions, state of object, 
environment variables, etc. 

Exception messages (segment 5) record the critical 
information when a test script fails, which often contain the 
functions or files being called during the test alarm. 

All the segments except the test steps, echo messages, and 
exception messages, are classified as miscellaneous message 
(segment 4), which may include prompt messages and 
messages from related infrastructures. 

In conclusion, test logs record information about testing 
activities, including the state of test scripts, the software under 
test, and related infrastructures, etc. However, it is a non-
trivial work to fully distinguish all the information, since the 
distribution of the information varies over distinct projects. 
Testers peruse the entire test logs to analyze testing activities. 

2)  Failure Causes 
Table 1 exhibits the explanations of the test alarm causes 

in the two projects. We also present the solutions to these test 
alarms, namely how testers deal with each test alarm. 

  
 There are seven types of causes in the projects. We find 

that handling test alarms in SIT is a complex process. On the 
one hand, different causes lead to distinct solutions. 
Debugging or locating bugs in test scripts (C4) is not enough 
for testers to handle test alarms. Testers may conduct obsolete 
test (C1), wrongly configure some files (C3), or face several 
environment issues (C6), etc. On the other hand, testers also 
need to cooperate with distinct stakeholders to handle test 
alarms. Testers send all the product code defects (C2) to 
developers. Some device anomalies (C5) also require the 
instrument suppliers to deal with. Site reliability engineers are 
responsible for fixing third-party software problems (C7).  

Hence, automatically deciding the type of causes can help 
testers focus on some specific resources. For example, if it is 
already known that a test alarm is caused by the test script 
defect, testers can further run some bug location and fixing 
tools for deeper analysis. 

In addition, many types of causes in Table 1 also exist in 
open-source software. After investigating the causes for false 
test alarms (all test alarms caused by non-product code defects) 
of Apache software [35], we find that causes C1, C3, C4, and 
C6 are also detected in [35]. 

III. CAUSE ANALYSIS MODEL 

In this section, we present our Cause Analysis Model 
(CAM) in detail. The basic idea of CAM is to search the test 
logs of historical test alarms that may have the same failure 
cause with the new test log. As shown in Fig. 4, CAM first 
pre-processes test logs with bilingual NLP techniques. Then, 
historical test logs are selected according to the function 
points. Third, CAM predicts the cause of a new test alarm 
based on similarity between new and historical test logs. 
Finally, both the cause and the difference between new and 
historical test logs are presented to facilitate the examination 
of prediction results. 

CAM is efficient as it is an information retrieval based 
algorithm without the overhead of training models. Besides, 
testers could better understand and verify the prediction 
results after examining the information presented by CAM. 

Table 1. Causes for test alarms and solutions 

ID 
Type of 
cause Explanation Solution 

 

C1 Obsolete test 
Test scripts or product codes are obsolete 
when continuous integration, e.g., testers 

conduct testing with out-of-date test scripts. 

Testers update test scripts 
or product codes. 

C2 
Product code 

defect 

Defects in product code, e.g., the product 
code does not meet the requirement of a 

function point. 

Testers submit bug 
reports to developers 

C3 
Configuration 

error 

Configuration files are incorrectly edited, 
e.g., testers set conflict parameters in 

configuration files. 

Testers correct 
configuration files 

C4 
Test script 

defect 

Faults in assertion expression, arguments, 
statement of test scripts, e.g., quotation 

marks mismatch in test script. 
Testers debug test scripts 

C5 
Device 

anomaly 

Defects exist in the devices for running the 
test bed, e.g., the interface board of running 

the communication system breaks down. 

Testers submit bug 
reports to instrument 
suppliers 

C6 
Environment 

issue 

Environment issues include the problems of 
the network, CPU, memory, etc., e.g., the 

space of hard disk is not enough for 
executing test scripts. 

Testers diagnose the 
environment 

C7 
Third-party 

Software 
problem 

Defects or incompatible issues exist in the 
third- party software, e.g., there are 

problems for the automatic testing system. 

Testers ask site reliability 
engineers to diagnose the 
third-party software 

Test step 1 

3 

Echo message 

2 

Miscellaneous 
message 

4 

Exception 
message 

5 

Figure 3. A snippet of test logs. 

 



We exhibit a running example to predict the cause of the 
test log snippet in Fig. 4(1). The test log is generated by a test 
script for verifying the function point "AUTO_UPDATE 
_SCHEMA” (AUS for short). The test log shows that "time 
out while waiting for more data". In addition, testers use some 
Chinese messages to warn that "exception happens 
continuously for more than 20 times". We translate and 
present the Chinese part in bold. 

A. Test Log Preprocessing 

In this study, test logs are bilingual documents, which 
makes test log preprocessing more complex than that in a 
single language. CAM preprocesses these test logs with a 
series of bilingual NLP techniques.  For test logs written in 
merely English, only English NLP is needed. 

Language Detection. We first distinguish the texts in a 
test log by the language type. Since languages are located at 
independent areas in the UTF-8 encoding table, we apply a 
regular expression “[\\u4e00-\\u9fa5]+” to detect the areas. 
Terms matching the regular expression are classified as 
Chinese terms. The remaining ones are English terms. 
Therefore, a test log is separated into two independent parts, 
namely the English part and the Chinese part. 

English NLP.  We apply three widely used English NLP 
steps to preprocess the English part, including tokenization, 
stop words removal, and stemming. First, the English part is 
tokenized with a regular expression “[\w-]+(\.[\w-]+)*” [38]. 
String meets the regular expression is tokenized as a term. 
Second, we consider the single letter terms, punctuation marks, 
and numbers as stop words and remove them, e.g., ‘E’ and 
“2015-06-28” in Fig. 4(1). Third, porter-stemming algorithm 
[39] is employed to stem each term in the English part. 

Chinese NLP. Word segmentation is a major difference 
between Chinese and English NLP steps, since Chinese 
documents are written without any spaces between terms [7]. 
We utilize IKAnalyzer, an open source NLP tool [41], for 
Chinese word segmentation. In Fig. 4(2), IKAnalyzer detects 
several terms in the Chinese part, including, "exception / 
happens / continuously / for more than / times". 

Term Integration. After transforming the test log into 
terms, we merge English and Chinese parts together according 
to their original order for unified operations (in Fig. 4(2)). 

B. Historical Test Log Selection 

Historical test log selection aims to select a subset of 
historical test logs for efficient cause prediction, as it is time 
consuming and noise overwhelming to search through all the 
historical test logs. For example, there are seven historical test 
logs in Fig. 4(3A). After selection, only test logs “his1” to 
“his5” are used for cause analysis. 

CAM selects historical test logs by examining the function 
points of test scripts, since we find that test scripts with the 
same function point usually target the same functionalities to 
check. They are more likely to fail with the same cause as we 
investigate in section V(D). For a project under test, test 
specifications [47] can be an effective material to extract the 
function points of test scripts. 

In this study, we extract the function point of each test 
script directly from the automatic testing system of our 
industry partner. We associate the function points with test 
logs by matching the test script ID. For example, in Fig. 4(3A), 
the function points of test logs “his1” to “his5” are “AUS”, 
while that of “his6” and “his7” are “NPF” ("NETCONF_ 
PROXY_FUNC"). When analyzing the test log of a new test 
alarm, CAM attempts to select historical test logs for the same 
function point as the new one. If no such historical test log is 
available, CAM utilizes all the historical test logs to conduct 
the prediction. 

C. Cause Prediction 

After historical test log selection, CAM predicts the cause 
of a new test alarm by first ranking the selected historical test 
logs according to their similarities with the new test log, and 
then analyzing the ranking list to achieve the possible cause. 
The basic hypothesis is that the possibility of two test logs 
implying the same cause increases along with the growth of 
the similarity between two test logs. 

1) Log similarity calculation 
CAM calculates the similarity between test logs by cosine 

similarity measurement [7]. The inputs of this measurement 

 

Figure 4. Framework of CAM for test alarm analysis with a running example 
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are the attribute vectors of test logs. We construct attribute 
vectors with the 2-shingling strategy, in which each 2-
shingling is an attribute. More specifically, if we view a 
document as a sequence of terms, a contiguous subsequence 
in the document is referred to as a shingle. The 2-shinglings 
are defined as the set of all unique shingles of size 2 in this 
document [6]. The 2-shingling strategy has been successfully 
applied in Chinese grammar detection [8], information 
retrieval [7], etc. For example, “exception happens” and 
“happens continuously” are two 2-shinglings of the snippet in 
Fig. 4(2). CAM calculates the weight of attributes with TF-
IDF (Term Frequency-Inverse Document Frequency) [7]. For 
an attribute A in the test log T, its TF-IDF value is defined as:  

TF-IDF𝐴,𝑇 = 𝑓𝐴,𝑇 ∗ log
𝑁

𝑛𝐴
                         (1) 

, where 𝑓𝐴,𝑇  denotes the number of times that A occurs in T, 𝑛𝐴 
denotes the number of test logs containing A, and N denotes 
the number of test logs in a project. 

With the attribute vectors of two test logs, the cosine 
similarity [7] is measured as: 

𝑆𝑖𝑚𝑙𝑜𝑔(𝑉⃗ 1, 𝑉⃗ 2) =
V⃗⃗ 1∙V⃗⃗ 2

|V⃗⃗ 1||V⃗⃗ 2|
                        (2) 

, where V⃗⃗ 1 ∙ V⃗⃗ 2 is the inner product of two vectors and |V⃗⃗ 1||V⃗⃗ 2| 
is the product of 2-norm for these vectors.  

CAM ranks the selected historical test logs in descending 
order by Simlog. In Fig. 4(3A) the test log “his3” has the largest 
Simlog = 0.586 and its cause is “C2”. 

2) Ranking list analysis 
It is reasonable to predict the test alarm cause with the top-

1 cause1 in the ranking list. However, we find that the top-1 
Simlog may be very low in some ranking lists, which can be 
interpreted as that the top-1 test log has a small possibility to 
share the same cause with the new one. Considering such a 
situation, CAM analyzes the test alarms as follows. For a new 
test log, if its top-1 Simlog is larger than a cause-specific 
threshold, CAM adds the new test log to a high-similarity set. 
Otherwise, CAM adds it to a low-similarity set. For a test log 
in the high-similarity set, CAM predicts the new log’s cause 
as the top-1 cause in the ranking list. For a test log in the low-
similarity set, a KNN strategy is conducted. 

 
Algorithm 1: Cause-specific threshold calculation 

Input: the set D of all historical test logs with the top-1 cause i;  

the target value t 

Output: threshold 𝜃𝑖 

1 let threshold 𝜃𝑖 = 1.0 
2 for x= 0; x<=1; x=x+0.001 do 
3  achieve the test logs with the top-1 𝑆𝑖𝑚𝑙𝑜𝑔 > 𝑥 from D 

4  if the portion of the above test logs with the real cause i  > t. 
5   threshold 𝜃𝑖 = 𝑥; break; 
6  else 
7   continue; 
8 end 
9 return threshold 𝜃𝑖 

 
Cause-specific threshold. We employ a cause-specific 

threshold  𝜃𝑖 for cause i to differentiate the high-similarity set 
and the low-similarity set. Since we could achieve a ranking 
list for a historical test log by calculating the Simlog for every 

                                                           
1 The top-1 cause refers to the top-1 test log’s cause, while the top-1 Simlog 

refers to the top-1 test log’s Simlog in a ranking list. 

test log prior to this historical test log, each historical test log 
is associated with a top-1 cause and top-1 Simlog. Given a new 
test log with top-1 cause i, the value of 𝜃𝑖 is defined as the 
minimum value between 0 and 1, such that over t*100% of the 
causes of all the historical test logs with the top-1 cause i and 
the top-1 Simlog >𝜃𝑖 are correctly predicted as cause i, where t 
is a parameter named target value (the impact of t is discussed 
in Section V). In algorithm 1, we elaborate the details on how 
to determine the threshold 𝜃𝑖 for cause i. 

Taking Fig. 4(3B) as an example, there are six historical 
test logs with the top-1 cause C2 in the set D. We increase x 
from 0 to 1. When x=0.500, only H1-H5 are considered. The 
top-1 causes of H1-H3 equal the real cause, therefore the 
portion is 0.6. When x=0.601, only H1-H4 are considered, 
among which the portion reaches 0.75, larger than the target 
value 0.7. At last, the threshold of cause C2 is 0.601. 

KNN strategy. For a test log in the low-similarity set, we 
sum up the Simlog values of the top-k test logs by their causes. 
Then, the cause of the new test log is assigned to the cause 
with the largest summed Simlog. 

As the Simlog of “his3” is smaller than C2’s threshold 0.601, 
CAM obtains top-k test logs in the ranking list (Fig. 4(3C)). 
After being summed, cause C3 achieves the largest summed 
Simlog =1.114, which are summed by the Simlog of “his4”, 
“his1”, and “his2”. Hence, CAM predicts the cause of the new 
test log as C3. 

D. Prediction result presentation 

CAM helps testers understand and verify the prediction 
results by presenting the causes as well as the differences 
between test logs. For test logs in the high-similarity set, CAM 
shows the differences between the new and the top-1 test log 
in the ranking list. For test logs in the low-similarity set, CAM 
shows the differences between the new test log and the first 
historical test log with the predicted cause, e.g., “his4” in Fig. 
4(3A). Since historical test logs have been analyzed by testers, 
testers may easily know whether two test logs implying the 
same failure causes after perusing the differences. 

To show the differences, CAM first removes all the 
numbers in test logs, since such information usually indicates 
time, IP address, and numeric counter, etc., which may be 
different in all the test logs. Then, CAM compares the 
differences between test logs with “JavaDiffUtils”, an open 
source tool to compare differences between texts [40]. The 
tool shows all the “Change”, “Delete”, and “Insert” operations 
between texts. At last, we highlight the different lines of the 
two test logs. For the “Change” operations, the lines in both 
two test logs are highlighted. For the “Delete” or “Insert” 
operations, only the lines with more information are 
highlighted. 

For example, in Fig. 4(4), only the first two lines are 
different. Instead of comprehending the entire contents of the 
test log, testers can focus on the first two lines to verify the 
prediction result with the assistance of the historical test log. 

IV. EXPERIMENTAL SETUP 

In this section, we detail the experiment related issues for 
evaluating CAM. The datasets and evaluation metrics are first 



presented, followed by a discussion of the baseline algorithms 
and the Research Questions (RQs).  

A.  Datasets 

 

We collect test logs from two industrial testing projects at 
Huawei-Tech Inc. to build two datasets, denoted as DS1 and 
DS2. In the datasets, each test log, corresponding to a test 
alarm, is associated with a failure cause manually labeled by 
the testers. Table 2 exhibits the statistical information of the 
datasets. Rows 1 to 7 show that there are more than 14,000 
test logs, including 7663 for DS1 and 6977 for DS2. These 
test logs are generated during 40 and 22 valid testing days, due 
to vacations and other testing activities. On average, testers 
are requested to analyze 192 and 317 test alarms per day in the 
two projects. As shown in rows 6 and 7, each test log contains 
more than 900 lines of texts, including about 247 and 344 test 
steps. The total size of the datasets exceeds 10GB. Hence, test 
logs are a relatively large software artifact, which may 
consume considerable time for analysis. Rows 8 to 14 present 
the number of test logs with respect to each type of cause. 
There are 7 and 6 types of causes detected in DS1 and DS2, 
respectively. Obsolete test (C1) never occurs in DS2 during 
the time frame. 

Based on the statistic information, we have the following 
observations. 

(1) Besides Product code defect (C2) and Test script defect 
(C4), other causes still cover 30% of test alarms. As shown in 
row 15, nearly four types of causes occur per day on average. 
These factors make testers have to decide the exact type of 
cause for each test alarm before fixing these alarms. 

(2) Another finding is that, no test alarm is caused by more 
than one type of cause in the datasets. One possible reason is 
that the causes defined in this study are for classifying the 
candidate part with defects, e.g., devices, environment, etc. A 
single buggy part can directly lead the test script to fail. In 
addition, after studying the daily work of testers in the projects, 
we find that if testers confirm the part causing the test alarm, 
they seldom diagnose the remaining parts, unless the test 
script fails again. Thus, automatically identifying the most 
possible cause for test alarms is beneficial for testers. 

B. Evaluation Method 

We utilize the incremental framework [42] to run 
algorithms in all the experiments, which can better simulate 
the daily work of a tester. More specifically, we partition the 
datasets by the testing day. When analyzing the test logs in 

dayT (T ≥ 1), we regard test logs in day0 to dayT-1 as historical 
test logs. Since the framework conducts prediction from the 
second day, there are 39 and 21 testing days with 7356 and 
6557 test logs in the datasets to be predicted respectively. 

 Under the incremental framework, we evaluate the overall 
performance of algorithms with Accuracy and AUC (Area 
Under roc Curve). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑢𝑚𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑
                           (4) 

Accuracy can be interpreted as the portion of correctly 
predicted test logs among all the predicted ones. 

𝐴𝑈𝐶𝑖 = ∫ 𝑇𝑃𝑅𝑖(𝑇)𝐹𝑃𝑅𝑖
′(𝑇)𝑑𝑇

−∞

∞

, 

𝑤ℎ𝑒𝑟𝑒 𝑇𝑃𝑅𝑖 =
#𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

#𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖
, 

𝐹𝑃𝑅𝑖 =
#𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

#𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖
                   (5) 

AUC is the area of the two-dimensional graph in which 
TPRi is plotted on the Y axis and FPRi is plotted on the X axis 
over distinct threshold T of possibility values [28]. A 
possibility value of CAM’s prediction is the Simlog of the first 
historical test log with the predicted cause in a ranking list. 
We calculate AUC in a one against all class strategy. When 
calculating AUC of cause i, all the test alarms predicted as 
causes i are considered as positivesi, while the other types of 
causes are considered as negativesi. AUC can avoid inflated 
performance evaluation on imbalanced data. For example, a 
classifier that always predicts “Product code defect (C2)” 
achieves 58.19% accuracy on DS1, but results in an AUC of 
50%, which is the same AUC as a random guess classifier. 

In addition, we also evaluate the resource consumption of 
these algorithms. Resource consumption is critical in industry 
projects. On the one hand, computation resources, e.g. CPU, 
memory, are limited in real scenarios. On the other hand, 
testers may conduct software testing several rounds per day. 
Low resource consumption makes algorithms timely update 
models with the information in the latest round. Thus, we 
evaluate the time and minimal memory for completing the 
prediction of each algorithm. 

C. Baseline Algorithms 

To the best of our knowledge, no studies directly utilize 
test logs to predict the causes of test alarms in SIT. We 
implement three baseline algorithms to study the 
characteristics of CAM. 

Lazy Associative Classifier (LAC). A similar work by 
Herzig et al. detects false test alarms with association rules 
mined from test steps [4]. Since the mining algorithm in [4] is 
not suitable for multiclass classification, we employ lazy 
associative classifier to predict the causes, which uses 
association rules to execute multiclass prediction [43]. 
Following the strategies in [4], we extract test steps from test 
logs. In our datasets, test steps can be identified since they are 
marked with timestamps. We build attribute vectors for LAC 

Table 2. Statistic of test logs and causes in the datasets 

# 
                Dataset 

Info   
DS1 DS2 

  

1 # Test logs 7663 6977 

2 Size 4.72GB 6.06GB 

3 Time Frame June 1st – July 30th, 2015 
Oct. 26th – Nov. 16th, 

2015 

4 # Testing day 40 day 22 day 

5 # Test logs per day 192 317 

6 # Avg. lines 942 lines 1375 lines 

7 # Avg. test steps 247 test steps 344 test steps 
  

8 # Obsolete test (C1) 1185 15.46% * * 

9 # Product code defect (C2) 4459 58.19% 1963 28.14% 

10 # Configuration error (C3) 761 9.93% 345 4.94% 

11 # Test script defect (C4) 892 11.64% 3259 46.71% 

12 # Device anomaly (C5) 335 4.37% 298 4.27% 

13 # Environment issue (C6) 19 0.28% 168 2.41% 

14 # Software problem (C7) 12 0.17% 944 13.53% 

15 # Avg. type of causes per day 3.85 per day 3.86 per day 



based on the test steps. Each entry in the vector represents 
whether a test step exists in a test log. The parameters of 
association rules, namely minimum confidence and support 
values, are set to 0.8 and 0.03 respectively [4]. We implement 
LAC with an open source tool shared by Federal University 
of Minas Gerais [44]. 

Best First Tree (BFT). Hao et al. [34] classify test alarms 
into product code defect and obsolete test script at the unit 
testing stage with BFT classifier. Since the attributes related 
to test complexity and program execution measurements are 
expensive to collect in large software systems [4], we examine 
whether the BFT classifier is suitable for cause analysis. BFT 
is implemented with the widely used machine learning tool 
WEKA [37]. We alternatively use the TF-IDF values of terms 
in a test log as attributes for BFT’s input. 

Topic Model (TM). As a popular way to analyze a large 
scale of documents, TM can be used to predict the test alarms 
causes. TM first extracts several topics from test logs by 
mining co-occurrence terms. Next, each test log is expressed 
by a series of topics with different probabilities. Thirdly, we 
construct attribute vectors with these topics and utilize the 
cosine similarity measurement to rank historical test logs. At 
last, the top-1 cause in the ranking list is used for the 
prediction. We implement one type of TM, namely Latent 
Dirichlet Allocation, with an open source tool Mallet [30]. We 
set the parameter of topic number to 200, alpha to 0.01, and 
beta to 0.01 according to the suggestion by Mallet. 

In the experiments, we set the test logs in day0 as the initial 
training set, and incrementally train models after each testing 
day, such that these algorithms can fully learn all the 
information from history. 

D. Research Questions 

RQ1: Are the test logs with the same causes more similar than 
those with different causes? 
RQ2: How do the parameters influence CAM’s performance?  
RQ3: How does CAM perform against baseline algorithms? 
RQ4: How does historical test log selection influence the 
performance of CAM? 
RQ5: How does CAM perform in a real development scenario? 

V. EXPERIMENTAL RESULTS 

All the algorithms are implemented in Java JDK1.8.0_31, 
and run on a PC with Intel Core(TM) i7-4790 CPU 3.6GHz 
and 24G memory. 

A. Answer to RQ1 

 
CAM predicts test alarm causes by the similarity between 

test logs. In this RQ, we verify CAM’s hypothesis, namely, 
test logs with the same causes are more similar than those with 
different causes. 

We calculate the pairwise Simlog of test logs on the two 
datasets and collect all the test log pairs with Simlog between x 
to x+0.01, where x ranges from 0 to 0.99 with a step size of 
0.01. In Fig. 5, the dark blue part of a bar in the bar chart 
presents the ratio of test log pairs with the same causes in 
distinct similarity range. As shown in Fig. 5, the ratio of test 
logs with the same causes gradually increases along with the 
increment of the Simlog.  More than 50% of test log pairs are 
with the same causes when Simlog > 0.79 on DS1 and Simlog > 
0.55 on DS2. Test logs with the same causes tend to have a 
higher Simlog than those with different causes. 

Answer to RQ1. The possibility of two test logs implying 
the same causes increases along with the growth of the 
similarity between two test logs. Test logs with the same 
causes are more similar than those with different causes. 

B. Answer to RQ2 

 
1) Influence of Parameters 

CAM requires a target value t to determine the cause-
specific threshold for each type of cause. Meanwhile, for the 
new test logs in low-similarity set, CAM employs KNN to 
analyze their causes. The influences of these parameters are 
investigated in this subsection. 

Target value t. We evaluate the relationship between 
CAM’s accuracy with respect to different target value t. To 
tune the parameter t, we set the number of neighbors k to a 
fixed value (k = 15 in this experiment), and vary t from 0 to 1 
with a step size of 0.1. When t = 1, the high-similarity set is 
empty. In contrast, the low-similarity set is empty when t = 0. 
Two curves in Fig. 6 show that as t is small (t < 0.4), the 
accuracy is low. When t increases, the accuracy increases as 
well. The stable ranges are slightly different: CAM’s accuracy 
is stable when t ranges from 0.6 to 0.9 on DS1, while the 
accuracy is more stable on DS2 when t varies. We set t = 0.7 
in the following experiments. 

 
Figure 5. Causes vs. cosine similarity of test logs. 
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Figure 6. Accuracy with varied target value t. 
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Figure 7. Accuracy with varied number of neighbors k. 
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Figure 8. Accuracy changes before/after KNN strategy. 
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Number of neighbors k. To investigate CAM’s accuracy 
with respect to varied k, we set t = 0.7 and k varies from 1 to 
30 with a step size of 1. When k = 1, it means CAM conducts 
the prediction only with the top-1 cause. The tendencies of the 
curves in Fig. 7 are similar to that in Fig. 6. As k is small (k < 
3), the accuracy is low, and then the accuracy gradually rises 
to be stable along with the growth of k. The accuracy turns to 
be stable when k > 14 on DS1 and k > 2 on DS2. We set k = 
15 in the following experiments. We do not set an extremely 
large k to avoid introducing noisy neighbors. 

2) Deep Analysis of Parameter Setting 
We investigate why such parameters (t=0.7, k=15) work 

for cause prediction. The target value t splits the new test logs 
into the high-similarity and low-similarity sets. The value of k 
controls the prediction strategy. Fig. 8 shows the total size of 
both high-similarity and low-similarity sets on the two 
datasets. The light and dark blue bars show the accuracy 
before and after applying the KNN strategy, respectively.  

In Fig. 8, CAM successfully splits the new test logs into 
two sets. The high-similarity set of DS1 and DS2 both cover 
more than 50% of the new test logs, in which CAM achieves 
an accuracy of 72.1% and 69.1% respectively. While the 
accuracies of the low-similarity sets are only 35.4% and 53.0% 
for the two datasets. After deciding the low-similarity sets, 
KNN strategy improves the accuracy of these sets by up to 
6.2%, namely, from 35.4% to 41.6% on DS1 and from 53.0% 
to 56.3% on DS2. However, if we also apply KNN to the high-
similarity set, the accuracy drops on both datasets. The reason 
is that according to the hypothesis of CAM, when the top-1 
Simlog is greater than the threshold, the top-1 cause is likely to 
be the ground-truth cause of the new test alarm. 

Answer to RQ2. We set t = 0.7 and k = 15 in this study. 
CAM achieves an accuracy around 70% for the high-
similarity set. KNN improves the accuracy in the low-
similarity set by up to 6.2%. 

C. Answer to RQ3 

1) Accuracy and AUC Evaluation 
We summarize the experimental results in terms of 

Accuracy in Fig. 9. CAM achieves an accuracy of 58.3% and 
65.8% on the two datasets. It outperforms the baseline 
algorithms by up to 7.3% on DS1 and 13.3% on DS2. 

Out of the three baseline algorithms, no one is superior to 
the others, since LAC performs well on DS1, while loses its 
dominance to BFT on DS2. Comparing with LAC, which 
mines local patterns from test steps, CAM shows its 
robustness over different datasets as it compares test logs 
from an overall perspective. Since a random prediction for 
more than 6 classes can only achieve an accuracy below 16%, 
the accuracy of CAM shows its ability in cause analysis. 

We also present the accuracy with respect to the testing 
days in Fig. 10 and Fig. 11. Out of the 39 and 21 predicted 
testing days, CAM performs best on 23 and 17 of them 
respectively. CAM achieves an accuracy over 80% for more 
than one-third testing days, namely 14 out of 39 on DS1 and 
11 out of 22 on DS2. 

We introduce the paired Wilcoxon signed rank test to 
explore the statistical significance between the performance 
of CAM and baseline algorithms. The p-values are 0.002, 
0.013, 0 on DS1 and 0.003, 0.002, 0.001 on DS2, when 

 

 
comparing the accuracy of CAM against LAC, BFT, and TM, 
respectively. Therefore, CAM is superior to the baseline 
algorithms in terms of accuracy with p < 0.05. 

AUC values of the algorithms are presented in Table 3. A 
value in bold denotes a result, which is better than the other 
algorithms on the same failure cause. Table 3 shows that some 
failure causes are difficult to be discovered, e.g., Environment 
issue (C6), since no algorithm is superior to a random 
classifier on DS1. CAM and BFT have similar performance, 
which outperforms the other algorithms on 3 out of 7 types of 
causes on DS1. On DS2, CAM performs better on the majority 
of causes than the baseline algorithms. For some causes, CAM 
has an AUC value beyond 0.80, showing that it could provide 
excellent discrimination on these causes.  

2) Computation Resources Evaluation 
 

Table 4. Comparison on computation resources consumption 

Algorithm 

Time (in minutes) 
 Memory 

DS1 (7356 test logs) DS2 (6557 test logs)  
DS1 DS2 

Training Test Total Training Test Total  
 

LAC 11.4 1 12.4 3.6 1.4 5  3 GB 3 GB 

BFT 208.6 0.3 208.9 46.8 0.2 47  22 GB 20 GB 

TM 75.1 2.8 77.9 142 4.3 146.3  8 GB 5 GB 

CAM 0 6.9 6.9 0 14.4 14.4  4 GB 4 GB 

 

Table 3. Comparison on AUC 

                Cause 

Algorithm 
C1 C2 C3 C4 C5 C6 C7 

 

DS1 

LAC 0.61 0.57 0.48 0.52 0.50 0.33 0.51 

BFT 0.73 0.65 0.66 0.60 0.77 0.40 0.70 

TM 0.68 0.67 0.56 0.58 0.62 0.50 0.54 

CAM 0.77 0.71 0.59 0.61 0.62 0.50 0.62 
 

DS2 

LAC - 0.60 0.53 0.64 0.63 0.83 0.73 

BFT - 0.67 0.65 0.70 0.60 0.77 0.86 

TM - 0.62 0.51 0.68 0.52 0.77 0.78 

CAM - 0.68 0.66 0.81 0.51 0.74 0.87 

 
Figure 9. Accuracy for algorithms on two datasets. 
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Figure 10. Accuracy per testing day on DS1. 
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Figure 11. Accuracy per testing day on DS2. 

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
cc

ru
ac

y

Testing day
LAC BFT
TM CAM



We compare the computation time and memory consumption 
in this subsection. To compare the computation time, we 
directly allocate 22GB memory for the algorithms (2GB is 
reserved for the operating system). Under the incremental 
framework, the computation time is calculated as the sum of 
the time for training or testing models after each incremented 
testing day. To compare the memory consumption, we 
allocate the memory increasingly from 2GB to 22GB with a 
step size of 1GB and observe the minimal memory for 
algorithms to accomplish the prediction. 

In Table 4, the columns refer to the algorithm name, the 
computation time, and the memory consumption on the two 
datasets. For each dataset, we present the training time, testing 
time, and total time in the sub-columns of Time. CAM 
conducts testing without spending time on training models. As 
shown in Table 4, LAC runs extremely fast as it only mines 
local patterns of test steps. BFT takes the longest time on DS1, 
since it frequently conducts garbage collection even with 
22GB memory. When comparing CAM against BFT and TM 
in terms of total time, CAM runs nearly 3 to 30 times faster 
than BFT, and 10 times faster than TM. CAM takes 6.9 and 
14.4 minutes in analyzing 7356 and 6557 test logs over the 
two datasets respectively, which means that it takes only 0.06s 
to 0.13s on average in helping testers analyze one test log. 

The training time is the main overhead for most algorithms. 
For example, it takes 208.6 minutes for BFT to incrementally 
train models on 7356 test logs. As a result, when the test logs 
continue increasing, it may take days to update models. In 
contrast, a new test log can be immediately updated to CAM, 
once the tester verifies the cause of that log. 

For memory consumption, most algorithms consume no 
more than 8GB for prediction, except BFT. BFT cannot 
complete predictions until we allocate 22GB memory. In 
contrast, CAM only takes less than 4GB memory. The 
underlying reason is that CAM conducts prediction without 
the need of allocating huge memory to train models.  

In addition, along with the growth of historical test logs, 
we can set a time frame of historical test logs to limit the 
computation time and memory consumption of CAM. 

Answer to RQ3. CAM outperforms the baseline 
algorithms over distinct evaluation metrics. Meanwhile, CAM 
is resources saving as it takes about 0.1s and less than 4GB 
memory to process a test log. 

D.  Answer to RQ4 

 
CAM utilizes function points to conduct historical test log 

selection. In a well-planned testing process, the function 
points are predefined when testers develop test scripts [45]. 

However, function points may be unavailable, if testers do not 
organize test scripts with them in some projects. We propose 
an algorithm named CAM-FP to simulate such a situation. 
CAM-FP searches among all the historical test logs to conduct 
prediction without historical test log selection. 

We show the AUC, accuracy, total time, and memory for 
CAM-FP and CAM over the two datasets in Table 5 and Table 
6. We find that historical test log selection could remove 
considerable noisy test logs, since CAM outperforms CAM-
FP by 2.4%-2.8% in terms of accuracy. CAM also 
outperforms CAM-FP on the majority of causes in terms of 
AUC. Besides, historical test log selection can significantly 
shorten the running time of CAM. After selection, CAM 
shortens the running time from 39.2 to 6.9 on DS1 and from 
46.4 to 14.4 on DS2 in minutes. 

We find that although the function points of test scripts are 
removed, CAM-FP still achieves competitive performance 
against the baseline algorithms. For several types of causes, 
the AUC value of CAM-FP is equal to or slightly better than 
CAM. It shows the robustness of CAM on different situations. 

Answer to RQ4. Historical test log selection reduces the 
noisy test logs and shortens the running time for CAM. 
Without the function points of test scripts, CAM still achieves 
competitive performance. 

E. Answer to RQ5 

 We integrate CAM into the automatic testing system of 
our industry partner. CAM achieves an average accuracy of 
72% after two months of running. “This version (CAM) is 
better than the intelligent analysis tool of last version 
(manually building regular expressions).” An interesting 
finding is that CAM performs better in a real development 
scenario than in the experiments. The reason is that testers 
tend to conduct software testing several rounds per day. The 
causes between each round may be similar. After testers verify 
the causes in a round, CAM immediately utilizes the 
information of the test logs to predict the causes in the next 
round. However, it is hard to decide the round for each test log 
in the experiment. When we split the test logs according to the 
testing days, it may limit the information available to CAM. 

In addition, instead of simply presenting the causes for test 
alarms, CAM also presents the differences between test logs. 
“I think CAM is accurate. Actually, I will not believe in an 
automatic tool. However, after presenting the historical test 
logs, I can quickly decide whether the prediction is correct. 
CAM accelerates my work.” The presentation of results is 
important since good presentations may make the prediction 
easy to comprehend [27]. Such human factor, namely, the 
influence of different presentations, is not the focus of this 
study. We leave it as a future work. 

Some testers also suggest new features for CAM, 
including “labeling the defect-related snippets from the 
lengthy test logs”, “provide suggestions on how to fix different 
types of defects”, etc. These features drive us to continue 
improving CAM. 

Answer to RQ5. CAM achieves an average accuracy of 
72% after two months of running in a real development 
scenario. CAM accelerates testers’ work with accurate result 
and comprehensible presentation. 

Table 5. AUC values for CAM and CAM-FP 

                Cause 

Algorithm 
C1 C2 C3 C4 C5 C6 C7 

 

DS1 
CAM-FP 0.73 0.70 0.59 0.57 0.59 0.50 0.62 

CAM 0.77 0.71 0.59 0.61 0.62 0.50 0.62 
 

DS2 
CAM-FP - 0.67 0.76 0.76 0.52 0.67 0.84 

CAM - 0.68 0.66 0.81 0.51 0.74 0.87 

 

 

 

 

 

 

Table 6. Accuracy, total time, and memory for CAM and CAM-FP 

Algorithm 
DS1 DS2 

Accuracy Total time Memory Accuracy Total time Memory 

CAM-FP 0.555 39.2 min 4GB 0.634 46.4 min 4GB 

CAM 0.583 6.9 min 4GB 0.658 14.4 min 4GB 



VI. THREATS TO VALIDITY 

A. Experiment Construction 

The generality of the cause prediction algorithm in CAM 
should be further studied, since the algorithms may be 
sensitive to the datasets. To alleviate this threat, we evaluate 
CAM over two industry datasets with more than 14,000 test 
logs and deploy it in a real development scenario. 

As the ground-truth causes of the test alarms are manually 
labeled by testers, there may induce some errors. However, 
industries have a strict process to control the quality of 
software testing. The error rate is usually under control. 

B. Method Construction 

In this study, the quality of test logs may influence the 
results of CAM. Currently, researchers study how to 
automatically decide where to log and what to log for 
developers [29]. These techniques may improve the quality of 
test logs for CAM to conduct the prediction. 

In addition, we mainly focus on analyzing test alarms with 
test logs. In order to detect the exact causes of test alarms, 
testers may go through various software artifacts, e.g., test 
logs, test script codes, etc. The accuracy of CAM may be 
further improved by leveraging more software artifacts. 
However, test logs are still an effective debugging tool [20]. 

VII. RELATED WORK 

A. Test Alarm Classification 

Rogstad et al. [48] distinguish test code obsoleteness from 
regression faults for database applications with a set of 
attributes, e.g., table names, SQL statements, etc. Hao et al. 
[34] classify test alarms into product code defect and obsolete 
test at the unit testing stage with complex attributes related to 
test complexity and program execution measurements. 
However, these techniques are either unique to database 
products or expensive to collect complexity information [4] in 
large software systems.  

Herzig and Nagappan classify test alarms in SIT [4]. They 
detect all false test alarms in Microsoft products with 
association rules, since the number of false test alarms is a 
measurement to measure test quality [13]. Different from 
detecting false test alarms, CAM analyzes the test alarms 
causes, which is more complex than the binary classification. 

Recently, several patents are filed to construct systems to 
analyze test results [14], bucket failure messages [5], and 
analyze error logs with regular expression [9]. However, 
technical details and evaluations are not presented in these 
patents. As to a survey with testers in our industry partner, 
they manually build regular expressions to classify test alarms 
and achieve an accuracy of 20%-30% over distinct projects. 

B. Log Analysis 

Previous work mainly analyzes two types of logs, namely, 
the logs generated by the released software product (system 
log) and the logs generated in the testing activity (test log). 

For the system log analysis, Oliner et al. discuss the 
advances and challenges in system log analysis [20]. Shang et 
al. [19] conduct program verification for big data analytic 
applications with test logs. Fu et al. [15] and Xu et al. [16] 
conduct anomaly detection through log analysis. Besides, 

system logs are also used to diagnose the underlying causes of 
system anomaly [17] [18]. However, such logs may lack 
information to analyze the defects in testing activities. 

For the test log analysis, previous work mainly utilize test 
logs to solve the oracle problem. Oracle problem is to check 
whether a test result reveals a failure or not. Andrews et al. 
[10] and Tu et al. [11] analyze test logs for oracle problem 
with state-machine-based models. Yantzi et al. [12] conduct 
an industrial evaluation of methodologies for oracle problem. 
Recent work by Anderson et al. [49] constructs attributes from 
test logs to predict the oracle. 

In conclusion, system logs analysis is a post-process of 
software testing. Our work falls into test log analysis. Instead 
of solving the oracle problem, we predict the underlying 
causes for test alarms. 

C. Failure Clustering  

Most studies in failure clustering detect failures in product 
code with execution profiles. Execution profiles capture the 
execution of basic blocks and conditional branches of 
software. Liu et al. [21] cluster failures with fault location 
techniques. Dickson et al. [22] cluster program executions and 
identify failures among the clusters with unusual-profile 
hypothesis. DiGiuseppe et al. [24] utilize latent-semantic-
analysis techniques for more precise failure clustering. 

Besides, Podgurski et al. [23] train pattern classifiers to 
group similar failures in product code. Francis et al. [25] refine 
the failure cluster results with two tree-based techniques. Lo 
et al. [26] capture program execution profiles to train machine 
learning models for identifying failures in software product. 

Clustering failures in product codes is a subsequent 
process of test alarm analysis. Approaches in analyzing 
product codes may fail to identify the failure causes in 
software testing. Meanwhile, execution profiles are hard to 
collect for testers in SIT. Different from clustering failures in 
product code, we classify the causes of test alarms in SIT. 

VIII. CONCLUSION AND FUTURE WORK 

In this study, we present our attempt towards predicting 
the multiple causes for test alarms in SIT. Our model 
leverages the test logs of historical test alarm to analyze the 
new test alarm. We evaluate our model over two industrial 
projects with more than 14,000 test alarms. Our model shows 
an accuracy of 58.3% and 65.8%, respectively. We deploy 
CAM for our industry partner and achieve an accuracy of 72% 
after two months of running, nearly three times better than 
their previous strategy with regular expressions. Our 
technique provides a direction for industry to analyze test 
alarms. In the future, we plan to employ more software 
artifacts to improve CAM and verify CAM over more 
software projects. 
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