
Learning to Combine Multiple Ranking Metrics
for Fault Localization

Jifeng Xuan
INRIA Lille - Nord Europe

Lille, France
jifeng.xuan@inria.fr

Martin Monperrus
University of Lille & INRIA

Lille, France
martin.monperrus@univ-lille1.fr

Abstract—Fault localization is an inevitable step in software
debugging. Spectrum-based fault localization applies a ranking
metric to identify faulty source code. Existing empirical studies
on fault localization show that there is no optimal ranking metric
for all the faults in practice. In this paper, we propose MULTRIC, a
learning-based approach to combining multiple ranking metrics
for effective fault localization. In MULTRIC, a suspiciousness score
of a program entity is a combination of existing ranking metrics.
MULTRIC consists two major phases: learning and ranking. Based
on training faults, MULTRIC builds a ranking model by learning
from pairs of faulty and non-faulty source code. When a new
fault appear, MULTRIC computes the final ranking with the
learned model. Experiments are conducted on 5386 seeded faults
in ten open-source Java programs. We empirically compare
MULTRIC against four widely-studied metrics and three recently-
proposed metrics. Our experimental results show that MULTRIC
localizes faults more effectively than state-of-art metrics, such as
Tarantula, Ochiai, and Ample.

I. INTRODUCTION

Debugging is an expensive task in software development.
Fault localization eases debugging by automatically analyzing
bugs to find out the root cause – a specific location in source
code – of the problem. Spectrum-based fault localization (also
called coverage-based fault localization) is a class of fault
localization approaches, which leverages the execution traces
of test cases to predict the likelihood – called suspiciousness
scores – of source code locations to be faulty. In spectrum-
based fault localization, a faulty program is instrumented for
collecting the running traces; then a ranking metric is applied
to compute suspiciousness scores for program entities (such
as methods [25], [24], basic blocks [31], and statements [12],
[2]). The most suspicious entities are given to a developer
for further analysis [21]. The developer manually analyzes the
source code, from the most suspicious location and downward,
to confirm the inferred root cause of the bug.

The ideal fault localization ranking metric would always
rank the faulty source code entity at the top, by giving highest
suspiciousness score. However, there is no such metric, and
in practice, empirical results [18], [1], [16] have shown that
metrics are more or less effective at giving discriminating
suspiciousness scores to the faulty locations. The motivation of
this paper is to decrease the effort (e.g., labor and time cost) of
developers in fault localization activities by proposing a better
way to rank program entities.

The family of ranking metrics for spectrum-based fault
localization approaches is large and diverse (e.g., Tarantula

[12], Ochiai [2], Jaccard [2], and Ample [4]). Most of these
metrics are manually and analytically designed based on
assumptions on programs, test cases, and their relationship
with faults [16]. To our knowledge, only the work by Wang
et al. [27] considers the combination of multiple ranking
metrics. They propose search-based algorithms to form such
a combination in fault localization. In this paper, we propose
the combination approach of multiple ranking metrics based
on machine learning. Our idea is to leverage the diversity of
ranking metrics by automatically combining multiple metrics.

We propose MULTRIC, a learning-based approach that com-
bines multiple fault localization ranking metrics. MULTRIC

consists in two major phases: learning and ranking. In the
learning phase, a ranking model is learned based on the ranks
of program entities in training faulty programs. When a new
fault happens, this is the ranking phase, in which the model
computes weights for combining metrics and generating the
final ranking. In other words, MULTRIC determines the final
ranking of program entities based on a combination of various
suspiciousness scores.

Fault localization cannot be transferred into a general
classification problem because the ranks of program entities
are hard to label as classes in machine learning. To solve this
problem, we use a learning-to-rank method. Instead of classes
in classification, a learning-to-rank method models orders be-
tween faulty entities and non-faulty entities and optimizes the
model to satisfy those orderings. In other words, the ranking
of program entities is converted to indicate whether an actual
faulty one ranks above a non-faulty one. The learning-to-rank
method is used to to combine 25 existing ranking metrics.

Experiments are conducted on 5386 seeded faults in ten
open-source Java programs. We empirically compare MULTRIC

against four widely-studied ranking metrics (Tarantula [12],
Ochiai [2], Jaccard [2], and Ample [4]) and three recently-
proposed ranking metrics (Naish1 [18], Naish2 [18], and GP13
[33]). Experimental results show that MULTRIC can localize
faults more effectively than the ranking metrics.

We make the following major contributions in this paper.

1. To our knowledge, this is the first approach that auto-
matically learns a suspiciousness model by combining multiple
existing ranking metrics.

2. We empirically evaluate MULTRIC on 5386 seeded faults
in ten open-source Java programs to evaluate our approach.

3. We compare the effectiveness of MULTRIC against seven

Test case Spectrum Suspiciousness
Program entity

t1 t2 t3 t4 t5 t6 t7 t8 t9 ef ep nf np Ochiai Ample

entity1 • • • • 1 3 4 1 0.55 0.22
faulty entity2 • • • • • • 3 3 2 1 0.15 0.55

entity3 • • • • • 3 2 2 2 0.10 0.60
Pass or fail P F P F P P F P P

Fig. 1. Example of fault localization on a program excerpt with three program
entities and nine test cases. A • indicates that a test case executes an entity.
Three out of nine test cases are failing because entity entity2 contains a
fault. Two sampled ranking metrics, Ochiai and Ample, are used for fault
localization. Both metrics cannot pinpoint the faulty entity at the top of fault
localization ranking.

ranking metrics (four typical ones and three recent ones). In
particular, MULTRIC beats metrics that are theoretically optimal
but under some unpractical assumptions [18].

The remainder of this paper is organized as follows. In
Section II, we describe the background and motivation. In
Section III, we present our approach, MULTRIC. In Section IV,
we list experimental design and research questions. In Section
V, we show the experimental results. In Sections VI and VII,
we list the threats to validity and the related work. In Section
VIII, we conclude and present the future work.

II. BACKGROUND AND MOTIVATION

We introduce the background of spectrum-based fault lo-
calization and the motivation of combining multiple ranking
metrics in our work.

A. Spectrum-Based Fault Localization

A program spectrum records the information related to
the execution of program entities (when and which entity
is executed). A program entity is a unit of source code,
e.g., a class, a method, or a statement. Spectrum-based fault
localization (also called coverage-based fault localization [21],
[25]) is a family of techniques for ranking faulty source code
entities based on spectra. In practice, spectrum-based fault
localization is used to speed up the debugging process and
quickly finding the root cause of failing test cases [12], [1].
Recently, fault localization has been used in the context of
automatic software repair repair [14].

A spectrum of a particular program entity is a tuple of four
values. Formally, the spectrum is defined as (ef , ep, nf , np),
where ef and ep denote the numbers of failing and passing
test cases that execute the program entity while nf and np
denote the numbers of failing and passing test cases that do
not execute the program entity under consideration. Spectra
can be collected based on instrumentation of program entities.
Fig. 1 illustrates a program composed of three entities and nine
test cases and shows its program spectrum.

A spectrum can be converted into a suspiciousness score
via a ranking metric. A ranking metric [18] (also a risk
evaluation formula [33], [29] or a similarity coefficient [2])
is a numeric function that calculates a suspiciousness score
for each program entity. Then, all program entities are ranked
according to the suspiciousness score. A ranking metric is
formally defined as a function of a spectrum, i.e., susp =

f(ef , ep, nf , np). For instance, Tarantula by Jones et al. [12], is
a widely-used ranking metric. . Tarantula measures the ratio of
failing test cases and passing test cases, and has initially been
developed for visualizing and localizing faults in C programs
(see Table I for details).

B. Motivation

Most of spectrum-based ranking metrics are designed based
on an analytical approach. No metric is systematically better
than all the others. In Table 1, we take two ranking metrics,
Ochiai and Ample, as examples to motivate of our work.
Ochiai by Abreu et al. [2], is one of the state-of-art ranking
metric in fault localization. This metric models the similarity
between test cases that execute an entity and test cases that
fail. Ample by Dallmeier et al. [4], is another well-known
metric, which differentiates the ratio of failing test cases and
the ratio of passing test cases. Empirical results [18], [33] show
that both Ochiai and Ample are effective in fault localization.
Ochiai and Ample are defined as Ochiai = ef√

(ef+ep)(ef+nf)

and Ample = | ef
ef+nf

− ep
ep+np

|, respectively.

We apply Ochiai and Ample to the example in Fig. 1.
Among three entities, Ochiai ranks entity1 as the top while
Ample ranks the entity3 as the top. However, both Ochiai and
Ample have not localized the actual fault in the first rank. An
intuitive question is raised: Is there any way to combine the
suspicious scores to rank entity2 as the top?

A potential solution to combine the suspiciousness scores
is formed as susp = a · Ochiai + b · Ample. First, we assume
that both a and b are two real numbers and that a + b = 1,
where a ≥ 0 and b ≥ 0. Then if we expect entity2 to be
always ranked at the top, both 0.55a+0.22b < 0.15a+0.55b
and 0.10a + 0.60b < 0.15a + 0.55b should be satisfied. In
this example, no real values of a and b can be obtained.
Considering those two ranking metrics, there is no fixed
weights for this example.

In this paper, we propose a more sophisticated kind of
solution, and assume that a and b are two functions (i.e.,
weighting functions) that takes program entities as input and
outputs a weight. In the example in Fig. 1, a simple solution
is as follows,

a =

{
1 if Ochiai ≥ 0.15

0 if Ochiai < 0.15
and b =

{
1 if Ample ≥ 0.55

0 if Ample < 0.55
.

Under this assumption, the suspiciousness score of entity2 is
0.70 while the scores of entity1 and entity3 are 0.55 and 0.60,
respectively. Then entity2 is correctly ranked at the top of the
list. This paper presents an approach to learn those weighting
functions.

III. PROPOSED APPROACH

We propose MULTRIC, a machine learning approach to
combining MULTiple existing ranking meTRICs for fault lo-
calization. In this section, we first introduce the framework
of MULTRIC. Second, we present the way of extracting multiple
suspiciousness scores of program entities. Third, we show how
to learn the model from training program entities; fourth, we
show how to predict fault locations with the learned model;
finally, technical details of the learning algorithm in MULTRIC

are given.

Learning Phase

Faulty programs

with test cases

Program

 spectra

Base metric,

e.g., Ochiai

Model

(weighting functions)

New faulty

program

with test cases

Program

 spectra

Faulty and non-faulty

entities with spectra

m ranking metrics,

e.g., Tarantula,

Ochiai, etc.

Pairs of faulty and

 non-faulty entities

Suspiciousness

calculation

Entity

selection

Model

learning

Suspiciousness

Combination

Final ranks Ranking Phase

Input

Suspiciousness

calculation

Entities with m

suspiciousness scores

Entities with m

suspiciousness scores

Fig. 2. Conceptual framework of MULTRIC. This framework takes faulty
programs with test cases and a set of known ranking metrics as input; the
output is the final ranking of program entities.

A. Framework

Our approach, MULTRIC, is a learning-based approach for
fault localization. In contrast to designing ranking metrics in
existing approaches, MULTRIC combines weights of existing
ranking metrics to form final rankings. To build the model,
MULTRIC learns weights from the spectra of faulty and non-
faulty program entities. Weights of existing metrics in MULTRIC

are tuned by minimizing unfit orders of faulty and non-faulty
entities. In our work, we use functions to model the weights.
Details will be shown in Section III-C. Informally, for a
program under test, the model of MULTRIC is built to rank faulty
entities above all the non-faulty ones.

Fig. 2 illustrates the overall structure of MULTRIC. This
structure consists of two major phases: learning and ranking.
As most approaches in spectrum-based fault localization, the
input of MULTRIC is faulty programs with test cases. In addition,
MULTRIC considers ranking metrics. In contrast to a single
ranking metric like Tarantula, MULTRIC combines multiple
ranking metrics in a weighted model instead.

In the learning phase, the training data is composed of
faulty programs, whose program spectra are collected by
executed the test cases (including at least one failing test case).
Given a base fault localization metric (e.g. Ochiai), all the
entities in this program are ranked. We select a subset of
entities with their spectra as training data. For all program
entities in the training data, we extract features, i.e., the
suspiciousness scores that are calculated with a set of existing
metrics. Then, all pairs of faulty entity and non-faulty entity
are extracted, given that a faulty entity should always be ranked
above a non-faulty one. All the pairs in the training data are

TABLE I. THE 25 RANKING METRICS FROM THE LITERATURE THAT
ARE COMBINED IN MULTRIC.

Ranking metric Definition Ranking metric Definition

Tarantula
ef

ef+nf
ef

ef+nf
+

ep
ep+np

Ochiai ef√
(ef+ep)(ef+nf)

Jaccard ef
ef+ep+nf

Ample | ef
ef+nf

− ep
ep+np

|
RussellRao ef

ef+ep+nf+np
Hamann ef+np−ep−nf

ef+ep+nf+np

SφrensenDice 2ef
2ef+ep+nf

Dice 2ef
ef+ep+nf

Kulczynski1 ef
nf+ep

Kulczynski2 1
2 (

ef
ef+nf

+
ef

ef+ep
)

SimpleMatching ef+np

ef+ep+nf+np
Sokal 2ef+2np

2ef+2np+nf+ep

M1 ef+np

nf+ep
M2 ef

ef+np+2nf+2ep

RogersTanimoto ef+np

ef+np+2nf+2ep
Goodman 2ef−nf−ep

2ef+nf+ep

Hamming ef + np Euclid
√
ef + np

Overlap ef
min(ef ,ep,nf)

Anderberg ef
ef+2ep+2nf

Ochiai2 efnp√
(ef+ep)(nf+np)(ef+np)(ep+nf)

Zoltar ef

ef+ep+nf+
10000nfep

ef

Wong1 ef Wong2 ef − ep

Wong3 ef − h, where h =

ep if ep ≤ 2

2 + 0.1(ep − 2) if 2 < ep ≤ 10

2.8 + 0.01(ep − 10) if ep > 10

then used to tune the weights of the ranking metrics to be
combined.

In the ranking phase, the spectra of a new faulty program
are collected. For each entity in this program, the same set
of known ranking metrics in the learning phase is applied.
Based on those metrics and the learned weights of the model,
the final suspiciousness scores of these entities are computed.
These scores are formed as the final fault localization result.

Application Scenario. In a long-term software project,
developers and testers find and fix faults, and the information
on faults is usually available in bug repositories and version
control systems. Those past faults are used to extract training
data; then based on the training data, MULTRIC learns the
ranking model for fault localization. When a new fault is
reported, MULTRIC is used to rank the source code entities in
order to ease debugging. This has no overhead for developers,
compared to spectrum based fault localization approaches,
like Tarantula or Ochiai. The whole process of MULTRIC is
run automatically, and the collection and execution of past
faults can automatically be executed on continuous integration
systems.

B. Suspiciousness in Ranking Metrics

The final suspiciousness score of MULTRIC is a combination
of suspiciousness by multiple existing metrics. In this section,
we describe the metrics in use and the method of combining
suspiciousness with weights. Weights of ranking metrics are
assigned during the learning phase (Section III-C) and are
applied in the ranking phase (Section III-D).

We use 25 existing ranking metrics [1], [18], [33], [31]
in our ranking model. Table I lists the details of these 25
metrics. Suspiciousness scores in all these ranking metrics are
calculated based on the spectra of (ef , ep, nf , np). In MULTRIC,
suspiciousness scores characterize program entities. Hence,
suspiciousness scores can be called features in a machine
learning terminology.

In MULTRIC, we add a weighting function to each existing
ranking metric to form the final suspiciousness score. Formally,

given a set K of known ranking metrics, the suspiciousness
score of a program entity x in MULTRIC, is defined as follows,

Multric(x) =
∑
k∈K

weightk(x) · suspk(x) (1)

where suspk(x) denotes the suspiciousness score by a ranking
metric k ∈ K and weightk(x) denotes the weight of the
ranking metric k. Similar to the example in Section II-B,
weightk(x) can be expressed with a real number or a function.
In our work, we define weightk(x) with a function to build a
refined ranking model,

weightk(x) =

i≤mk∑
i=1

wki · rki(x) (2)

where wki is a positive number, rki(x) is a binary function that
returns only 1 or 0, and mk is the times of tuning the weight for
the metric k before the algorithm converges. Thus, weightk(x)
is a sum of numeric weights for rki(x). In general, a function
rki(x) is a binary classifier in machine learning, which can be
conducted in various forms [23]. In our work, we use a simple
definition as follows,

rki(x) = ‖suspk(x) ≥ θki‖ (3)

where θki is a learned constant as the threshold of the binary
decision in rki(x) and ‖ · ‖ is a binary operator. ‖ · ‖ = 1 if
· is true and ‖ · ‖ = 0 if · is false. Hence, in our work, we
learn weightk(x) for each known ranking metric k ∈ K from
training data.

C. Learning the Model from Training Faults

We train the model of MULTRIC as follows. Informally,
the model learns the orders between faulty entities and non-
faulty entities: a faulty entity should always have a higher
suspiciousness score than a non-faulty one. We call an ordered
pair of faulty and non-faulty program entities a “training
datum”. Based on these ordered pairs, we train the ranking
model with a learning-to-rank algorithm, which comes from
information retrieval [15]. In this section, we describe how to
form the training data for MULTRIC. Details of the learning-to-
rank algorithm will be presented in Section III-E.

We collect training data from known faulty programs. As
mentioned above, our data are in a form of pairs, which distin-
guish faulty and non-faulty program entities in one program.
Formally, given a faulty program t, 〈x+t , x−t 〉 is defined as an
ordered pair of a faulty entity x+t and a non-faulty entity x−t .
This pair indicates an order that x+t should be ranked above
x−t .

Algorithm 1 shows the details of the learning process.
Ideally, all the pairs can be extracted from each faulty program.
However, this leads to a large amount of training data, which
is time-consuming and hard to be applied in practice. In our
approach, we only consider a subset of pairs using a specific
non-random strategy, i.e., a neighborhood strategy.

The neighborhood strategy selects pairs of entities that
are close based on a given initial ranking. The intuition is
as follows: if two program entities are close in an initial

Input:
T , set of faulty programs with test cases;
K, set of known ranking metrics, including Tarantula,
Ochiai, etc;
β, base metric for ranking program entities;
γ, number of neighbors above or below faulty entities.
Output:
Ranking model
foreach faulty program t ∈ T do

Collect spectra for an entity set St in program t;
Generate ranks for each entity xt ∈ St with β;
Add a faulty entity x+t ∈ St to a set X+

t ;
Add each non-faulty entity x−t of 2γ neighbors
(above or below x+t) to X−t ;

end
Extract suspiciousness for all x+t ∈ X+

t with all k ∈ K;
Extract suspiciousness for all x−t ∈ X−t with all k ∈ K;
foreach faulty program t ∈ T do

Form all the ordered pairs 〈x+t , x−t 〉 and add to T ;
end
Build a learning-to-rank model with ordered pairs in T ;

Algorithm 1: Learning a ranking model for fault localization
based on known ranking metrics.

ranking, they have similar suspsiciousness scores reflecting
similar spectra, and are hard to be differentiated. This is where
the weighting functions can make the difference compared to
a base metric. In this neighborhood strategy, a neighbor is
defined as one of the nearest non-faulty entities in an initial
ranking. For example, we can extract three nearest non-faulty
entities above a faulty entity and another three nearest ones
below the faulty entity to form six neighbors.

We select neighbors above a faulty entity because we
expect the faulty one is ranked above its neighbors; on the
other hand, we select neighbors below a faulty entity because
these neighbors should be kept below the faulty one. Based
on this targeted selection of entities, we form faulty and non-
faulty entities into an ordered pair. Finally, all the ordered pairs
are used to learn the ranking model. To determine the initial
ranking, we use one known metric to generate suspiciousness
scores, e.g., Tarantula, Ochiai, or etc.

Let us now discuss two implementation details, which are
omitted in the process of Algorithm 1 for sake of space. First,
for each program, we only keep the one entity if two entities
have the same spectrum. Especially, if a faulty entity and
a non-faulty entity have the same spectrum, we only keep
the faulty one. This implementation may omit some of non-
faulty entities but can reduce the ambiguity for the learning
algorithm. Second, we normalize suspiciousness scores from
0 to 1 (both inclusive) for each ranking metric. That is, given
a ranking metric k, the normalized suspiciousness is defined
as norm suspk = suspk−mink

maxk−mink
, where mink and maxk

denote the minimum and the maximum for the metric k in
the selected faulty and non-faulty entities. We conduct this
normalization because some of ranking metrics may generate
negative suspiciousness scores (e.g., Goodman and Wong2 in
Table I); such negative scores add the complexity of learning
algorithms.

D. Ranking Program Entities with the Model

In Section III-C, we learn a ranking model of MULTRIC from
training faults. In this section, we present how to generate
new suspiciousness scores with the learned model. As shown
in Fig. 2, given a new faulty program, MULTRIC first collects
program spectra for all the entities. Then existing metrics in
Table I are used to calculate suspiciousness scores. Combined
suspiciousness scores with their weights in the learned model,
MULTRIC can calculate the final suspiciousness scores for all the
entities. Finally, according these scores, we rank entities as the
final result of fault localization. Similar to the learning phase,
suspiciousness scores for each metric k ∈ K are normalized
with mink and maxk in the training data.

E. Algorithm: Learning to Rank

In MULTRIC, we train our ranking model with a learning-
to-rank algorithm. In information retrieval, learning to rank
is a family of algorithms, which re-rank documents with a
learnable model using features of candidate documents in a
query [15].

Learning to rank addresses the ranks of documents instead
of labels of documents in general supervised leaning. Existing
work in learning to rank can be divided into three categories:
pointwise approaches, pairwise approaches, and listwise ap-
proaches. As their names suggest, these three categories of
approaches rank documents based on the ranks of single points,
pairs, and lists, respectively [26].

In our work, we adapt learning-to-rank techniques to re-
rank program entities to address fault localization. Given a
faulty program, the goal of fault localization is to rank faulty
entities above non-faulty ones. Besides the order of faulty and
non-faulty ones in a program, there is no further comparison
among program entities. Thus, we apply pairwise approaches
in our work.

We learn the model in MULTRIC with pairs of faulty and
non-faulty program entities. The goal of learning the model is
to determine the parameter values in the weighting structure
in (1), including wki in (2) and θki in (3) for a ranking metric
k in the ith trial. Since our goal in MULTRIC is to rank faulty
entities as the top, we define the loss function in learning to
rank as the number of wrongly rankings,

loss =
∑
〈x+

t ,x−
t 〉

‖Multric(x+t) ≤ Multric(x−t)‖ (4)

Then the goal of learning the model in MULTRIC is converted
into minimizing the loss function, i.e., minimizing the number
of wrongly orders of faulty and non-faulty entities.

Many pairwise learning-to-rank approaches can solve this
problem, e.g., RankBoost [8], RankNet [3], and FRank [26].
In this paper, we apply RankBoost, a classic and efficient
approach based on AdaBoost [22], to learn the parameter
values in the model. Algorithm details of RankBoost can be
found in [8]. In this paper, we do not discuss the impact by
applying different learning-to-rank algorithms.

IV. EXPERIMENTAL DESIGN

This section describes the experimental settings (includ-
ing protocol, subject programs, and implementation) and the
research questions in our work.

A. Protocol

We evaluate our approach by analyzing the performance
of fault localization over a large number of seeded faults. In
this paper, we consider object-oriented programs and choose
methods as program entities following [25] and [21].

We use the absolute wasted effort of localizing a faulty
method to examine the effectiveness of ranking metrics. Given
a faulty subject program and a ranking metric, all the methods
are ranked according to their suspiciousness scores. Then the
wasted effort is defined as the rank of the actual faulty method.
If more than one methods have the same suspiciousness scores
as the faulty method, the wasted effort is the average ranks of
all the methods with such suspiciousness scores. That is, given
a set S of candidate methods, the wasted effort is formally
defined as
effort = |{susp(x) > susp(x∗)}|+ |{susp(x) = susp(x∗)}|/2 + 1/2

where x ∈ S is any candidate method, x∗ is the actual faulty
method, and | · | calculates the size of a set. The value of the
wasted effort is from 1 to |S| (both inclusive).

The MULTRIC model is trained on faulty programs. For each
subject program, we randomly select 30% of faults to form the
training data and use the rest 70% of faults as new faults for
evaluation. We use the average absolute wasted effort on these
70% of faults for all the ranking metrics, including MULTRIC,
Tarantula, Ochiai, etc. To avoid the bias of random selection,
we conduct 30 runs of the same experiment. In MULTRIC, the
set K of known ranking metrics is composed of all 25 ranking
metrics listed in Table I; the base metric β is set as Ochiai; the
number of neighbors γ is set as 10 (i.e., 10 neighbors above a
faulty entity and 10 neighbors below). Experiments in Sections
V-C and V-D will further discuss the sensitivity of β and γ on
the effectiveness of MULTRIC.

B. Subject Programs

We evaluate our approach on 5386 faults in ten Java
open-source subject programs. These subject programs and
their faults come from Steimann et al. [25] and are publicly
accesible1. Table II shows the details of these subject programs,
including the program version, the number of methods, the
number of methods under test, the number of test cases, and the
number of faults. For each subject program, faults are seeded
with six mutation operators: negating conditions, replacing
constants, deleting statements, inversing operators, assigning
null values, and returning null values. To form all the faults
in experiments, each mutation operator is run repeatedly and
100 faults are randomly selected. Thus, up to 600 faults are
seeded based on the program mutation techniques (for some
subject programs, a mutation operator generates less than 100
faults because the search space for mutation is insufficient).
As shown in Table II, all the ten subject programs have over
350 faults.

1http://www.feu.de/ps/prjs/EzUnit/eval/ISSTA13.

TABLE II. DESCRIPTIVE STATISTICS OF OUR DATASET OF TEN
SUBJECT PROGRAMS AND THEIR FAULTS

Subject program # Methods
Methods
under test

Test
cases

Faults

Daikon 4.6.4 14387 1936 157 352
Eventbus 1.4 859 338 91 577
Jaxen 1.1.5 1689 961 695 600
Jester 1.37b 378 152 64 411

JExel 1.0.0b13 242 150 335 537
JParsec 2.0 1011 893 510 598

AcCodec 1.3† 265 229 188 543
AcLang 3.0† 5373 2075 1666 599

Draw2d 3.4.2† 3231 878 89 570
HtmlParser 1.6† 1925 785 600 599

Total 29360 8397 4395 5386
† Full names of last four subject programs are Apache Commons Codec,
Apache Commons Lang, Eclipse Draw2d, and HTML Parser, respectively.

C. Implementation

Our approach is implemented in Java 1.7. Experiments are
conducted on a workstation with an Intel Xeon 2.6.7 CPU.
The ranking algorithm in MULTRIC is implemented with an
open source tool, RankLib2. In our implementation, the whole
process of MULTRIC in Fig. 2 is run automatically.

D. Research Questions

We empirically investigate the following four Research
Questions (RQs).

RQ1. How effective is our approach, MULTRIC, compared
with state-of-art spectrum-based ranking metrics?

This questions investigates the most important criterion of
fault localization: the effectiveness in terms of the wasted effort
(as defined in IV-A). We compare our approach against four
widely-studied ranking metrics (Tarantula, Ochiai, Jaccard, and
Ample) and three recent-proposed ranking metrics (Naish1,
Naish2, and GP13).

RQ2. How many existing ranking metrics are involved in
MULTRIC?

In MULTRIC, we combine multiple existing ranking metrics
to form the final ranking of suspicious entities. Not all ranking
metrics are actually used in MULTRIC. We empirical examine
the number of ranking metrics that are used after the learning
phase. Moreover, we present which ranking metrics are used
most frequently. The answer to RQ2 gives useful information
on the selection of ranking metrics to fault localization prac-
titioners.

RQ3. Which base metric is the most effective for learning
the model of MULTRIC?

As explained above and shown in Fig. 2, MULTRIC uses a
base metric to compute an initial ranking of entities in faulty
programs. We investigate which metric is the most effective
for learning the model of MULTRIC.

2RankLib 2.1, http://sourceforge.net/p/lemur/wiki/RankLib/.

TABLE III. NEW COMPETITORS OF MULTRIC: THREE RECENT
PROPOSED RANKING METRICS

Ranking metric Definition

Naish1 [18]
{
−1 if ef > 0

np if ef = 0

Naish2 [18] ef − ep
ep+np+1

GP13 [33] ef (1 +
1

2ep+ef
)

RQ4. What is the impact of the number of neighbors for
learning the model in MULTRIC?

In Section III-C, we describe the data selection of faulty
and non-faulty program entities. The non-faulty entities are
selected based on a neighborhood strategy. We empirically
study the impact of the number of neighbors, both on the
wasted effort and the running time.

V. EXPERIMENTAL RESULTS

In this section, we apply the experimental protocol de-
scribed in Section IV to answer four research questions. The
experiments involve 5386 faults in ten subject programs.

A. RQ1. Effectiveness

To evaluate the effectiveness of fault localization, we
compare the absolute wasted effort of MULTRIC with four
widely-studied ranking metrics, Tarantula, Ochiai, Jaccard, and
Ample (in Table I), and three recent proposed ranking metrics,
including Naish1, Naish2, and GP13 (in Table III). Naish1 and
Naish2 by Naish et al. [18] (respectively called Op1 and Op2 in
[33]) are two formulas, which are proved as the optimal under
theoretical assumptions [18]. The optimality denotes there is
no higher suspiciousness score in other ranking metrics. Yoo
[33] reports that Naish1 and Naish2 are strong ranking metrics
in practice although not always optimal in practice. GP13 by
Yoo [33] is an automatically generated ranking metric based on
Genetic Programming (GP), and reported as the best ranking
metric among all the GP-based ones. All of Naish1, Naish2,
and GP13 have been evaluated on C programs. The results we
present in this section are for Java programs.

Table IV gives the median, the average, and the standard
deviation of the wasted effort over 30 runs for each subject
program. Table IV shows that MULTRIC achieves the lowest
wasted effort in nine out of ten subject programs among
the metrics under comparison. An exception is Jester, where
Naish1 gives the best result (the lowest effort). One possible
reason is that the average wasted effort by most of the metrics
on Jester is the lowest among the ten subject programs. That
indicates that original results by Ochiai, Ample, or Naish1
are already good and hard to improve. On Eventbus, Jaxen,
JExel, JParsec, AcLang, and HtmlParser, the performance of
MULTRIC is over 50% better than that of Tarantula; on Jaxen
and AcLang, the effort of MULTRIC is over 50% better than that
of Ochiai. We also see that the standard deviation (stdev) is
low, meaning that the results of MULTRIC are stable.

If we compare only the four typical ranking metrics (Taran-
tula, Ochiai, Jaccard, and Ample), Ochiai obtains the best
results on six out of ten subject programs while Ample obtains
the best on the other four. This experiment gives replication

TABLE IV. COMPARISON OF THE WASTED EFFORT ON TEN SUBJECT
PROGRAMS. LOW EFFORT OF A RANKING METRIC INDICATES HIGH

EFFECTIVENESS. MULTRIC IMPROVES FAULT LOCALIZATION ON MOST
SUBJECT PROGRAMS.

Subject program MULTRIC Tarantula Ochiai Jaccard Ample Naish1 Naish2 GP13

Median 92.06 132.61 129.12 129.20 143.26 147.93 160.90 131.49
Daikon Average 92.47 132.62 128.97 129.04 142.76 147.05 159.94 131.47

Stdev 4.50 7.04 6.80 8.82 6.81 8.13 7.19 6.95

Median 6.39 16.21 6.82 7.08 8.54 45.54 13.19 14.03
Eventbus Average 6.44 16.03 6.85 7.11 8.58 45.33 13.16 13.98

Stdev 0.49 0.91 0.33 0.33 0.48 1.98 0.42 0.84

Median 8.62 50.76 19.65 28.59 52.69 12.12 59.33 19.62
Jaxen Average 8.59 50.56 19.60 28.63 52.25 12.26 59.07 19.54

Stdev 0.57 1.98 1.16 1.38 3.06 1.40 1.18 1.36

Median 3.18 4.87 3.53 3.70 3.28 3.09 6.68 4.03
Jester Average 3.20 4.86 3.52 3.67 3.26 3.08 6.70 4.06

Stdev 0.11 0.20 0.10 0.12 0.09 0.08 0.17 0.16

Median 6.74 15.51 9.92 10.71 9.67 7.35 14.34 10.92
JExel Average 6.58 15.44 9.87 10.74 9.57 7.17 14.28 10.84

Stdev 0.47 0.66 0.59 0.63 0.68 0.57 0.57 0.57

Median 3.95 14.02 4.77 5.52 5.68 22.90 13.35 9.19
JParsec Average 3.92 14.14 4.71 5.43 5.64 22.64 13.46 9.11

Stdev 0.38 0.88 0.33 0.42 0.52 2.44 0.62 0.58

Median 3.33 6.47 3.94 4.12 3.58 3.72 4.96 5.29
AcCodec Average 3.33 6.46 3.96 4.14 3.56 3.71 4.94 5.24

Stdev 0.15 0.20 0.17 0.18 0.15 0.24 0.19 0.15

Median 1.83 5.58 4.33 4.39 5.52 18.95 5.87 5.21
AcLang Average 1.84 4.89 3.49 3.56 4.26 18.28 5.06 4.47

Stdev 0.10 1.23 1.24 1.24 1.85 4.28 1.23 1.22

Median 23.43 31.46 26.05 26.33 25.96 34.38 48.57 27.62
Draw2d Average 23.32 31.61 26.12 26.39 26.19 33.70 48.65 27.69

Stdev 1.06 1.59 1.49 1.51 1.52 2.37 1.32 1.47

Median 6.43 21.25 7.15 8.58 12.25 20.75 48.92 13.70
HtmlParser Average 6.48 21.29 7.17 8.55 11.95 21.03 48.96 13.62

Stdev 0.54 1.15 0.36 0.45 1.15 1.95 0.90 0.73

evidence that Ochiai and Ample are strong ranking metrics on
Java programs. GP13 achieves good results; this replication
validates the effectiveness of its formula [33].

Let us now focus on Naish1 and Naish2, which have
been claimed to be optimal [18]. They are outperformed by
MULTRIC on nine subject programs, by GP13 on five subject
programs and by Ochiai on three of them. A possible reason
for the difference between the theoretical and empirical results
is that faulty programs in practice may not follow the same
assumptions.

For example, one assumption for the optimality of Naish1
and Naish2 is that test cases execute program paths in a
uniform distribution (all the paths have the same execution
probability during testing) [18]. This assumption is not satis-
fied in practice. Another assumption is that a failing test case
executes at least one faulty position in source code [25], [29].
This assumption may not be satisfied by some faults. Taking
Jaxen and HtmlParser as examples, a failing test case does not
execute a faulty position on 8/600 faults in Jaxen and 27/599
faults in HtmlParser.

Answer to RQ1. Our approach MULTRIC obtains the best
fault localization performance on nine out of ten subject
programs in the experiments. Such results show that MULTRIC is

5

10

15

20

D
a

ik
o

n

E
v
e
n

tb
u

s

J
a

x
e
n

J
e

s
te

r

J
E

x
e
l

J
P

a
rs

e
c

A
c
C

o
d
e

c

A
c
L
a

n
g

D
ra

w
2

d

H
tm

lP
a

rs
e

r

#
 R

a
n

k
in

g
 m

e
tr

ic
s

Subject program

Fig. 3. A study of the number of known ranking metrics used in MULTRIC
after learning (with weights over zero). A box plot shows the minimum, the
first quartile, the median, the third quartile, and the maximum (no result is
considered as an outlier).

very effective in fault localization. Meanwhile, our experiments
on ten Java programs also show that Ochiai, Ample, Naish1,
and GP13 give good results.

B. RQ2. Features

As explained in Section III-B, we add weights to 25 known
ranking metrics for computing the final suspiciousness scores.
If a ranking metric is weighted to zero, the metric is not used at
all in the final fault localization. Using our experimental data,
we empirical analyze how many ranking metrics are actually
used in MULTRIC.

Fig. 3 presents the box plot of the number of used ranking
metrics (with weights over zero) over 30 individual runs.
On three out of ten subject programs, Daikon, Jester, and
AcCodec, MULTRIC uses a small proportion of ranking metrics,
e.g. 8/25 ranking metrics (median) for AcCodec. The maxi-
mum median is for Jaxen (16/25 ranking metrics). This shows
that MULTRIC indeed discards many ranking metrics at training
time (based on the median, over one third of ranking metrics
are discarded.) . Considering the stability for the number of
ranking metrics, Jester is the most stable one, which ranges
only from 7 to 11 metrics; AcLang is on the other extreme:
the number of used ranking metrics varies from 7 to 20.

For each subject program, we record the selection of each
ranking metric over the 30 runs. Table V presents the most
selected ranking metrics in ten subject programs. As shown
in Table V, several ranking metrics appear in all the 30 runs
for each subject program, for example, two ranking metrics
(Ample and Wong3) in AcCodec and eight ranking metrics
(Kulczynski1, Kulczynski2, etc.) in Eventbus. Ample is the
only ranking metric which is selected over all runs, Zoltar
appears in all runs but one (for AcCodec).

The results in Table V is practical. In general, the running
time of MULTRIC depends on the number of ranking metrics
during the model training. A small set of ranking metrics
results in low running time. Thus, for a new subject program
or when computational resources are limited, we can select
ranking metrics according to these empirical results. For ex-
ample, Ample should be the default choice since it is the most
used ranking metrics in Table V.

TABLE V. THE MOST USEFUL RANKING METRICS. MULTRIC SELECTS THESE METRICS SINCE THEY ARE USED IN MOST OF THE RUNS. RANKING
METRICS THAT ARE USED IN ALL RUNS FOR A GIVEN SUBJECT PROGRAM ARE MARKED IN GREY.

Subject program Top-1 # Top-2 # Top-3 # Top-4 # Top-5 # Top-6 # Top-7 # Top-8 # Top-9 # Top-10 #

Daikon Zoltar 30 Ample 30 Wong3 30 Tarantula 28 Hamming 27 Euclid 27 Wong2 26 Ochiai 24 M1 17 RogersTanimoto 16
Eventbus Kulczynski1 30 Kulczynski2 30 M2 30 Zoltar 30 Ample 30 Wong2 30 Wong3 30 Ochiai2 30 Tarantula 28 RussellRao 28

Jaxen Kulczynski1 30 Kulczynski2 30 M2 30 Overlap 30 Zoltar 30 Ample 30 Sokal 29 Euclid 29 Wong2 28 Hamming 26
Jester Kulczynski1 30 M2 30 Overlap 30 Zoltar 30 Ample 30 Wong3 30 Ochiai 26 Ochiai2 20 RogersTanimoto 16 Wong2 12
JExel Tarantula 30 Kulczynski2 30 Sokal 30 M1 30 Overlap 30 Zoltar 30 Ample 30 M2 29 Hamann 28 Kulczynski1 26

JParsec Tarantula 30 Kulczynski2 30 M2 30 Overlap 30 Zoltar 30 Ample 30 Wong2 26 Kulczynski1 25 RogersTanimoto 22 Wong3 22
AcCodec Ample 30 Wong3 30 Zoltar 29 M2 27 Wong2 23 RogersTanimoto 15 Overlap 15 RussellRao 14 Kulczynski1 14 Kulczynski2 12
AcLang Zoltar 30 Ample 30 Wong3 30 Kulczynski1 28 Wong2 28 RogersTanimoto 23 Kulczynski2 21 Ochiai 19 Overlap 16 Hamming 15
Draw2d Tarantula 30 Kulczynski1 30 M2 30 Overlap 30 Zoltar 30 Ample 30 Wong3 30 Ochiai 29 Hamming 29 Wong2 27

HtmlParser Kulczynski1 30 Kulczynski2 30 M2 30 Overlap 30 Zoltar 30 Ample 30 M1 29 Wong2 27 Wong3 26 RogersTanimoto 26

Answer to RQ2. The number of ranking metrics used
in MULTRIC varies with subject programs. The median of the
number of ranking metrics in each subject program ranges
from 8 to 16. A list of frequently used ranking metrics is
provided and shows that Ample and Zoltar are good ranking
metrics for MULTRIC according to our empirical results.

C. RQ3. Base Metric

In Algorithm 1, we initialize a ranking of program entities
with a base metric β. In the experiments of Section V-A, we
manually set this ranking metric to Ochiai, one of state-of-
art ranking metrics. In this section, we examine the impact of
different base metrics on the fault localization effectiveness.

We consider two subject programs, Jaxen and HtmlParser.
We compute the results with using six ranking metrics as
initialization (Tarantula, Ochiai, Jaccard, Ample, M2, and
Wong3 in Table I). The first four ranking metrics are the same
as those in Table IV; the other two, M2 [18] and Wong3 [28],
are widely-studied in fault localization. Fig. 4 presents the
comparison as a bar chart. Each value is the average wasted
effort over 30 runs (a lower value is better). For the subject
program Jaxen, Ochiai is the best base metric and provides the
lowest wasted effort. For subject program HtmlParser, Ample
is the best base metric and Ochiai is the second. We also find
that the wasted effort does not change much when using other
ranking as initialization, and that our approach is not sensitive
to this parameter. However, it is valuable to select a good
ranking metric such as Ochiai, in order to helps MULTRIC for
the model learning.

Answer to RQ3. Ochiai and Ample are good choices as a
base metric. An effective base metric is helpful to maximize
the effectiveness of MULTRIC.

D. RQ4. Number of Neighbors

In Section III-C, we propose a neighborhood strategy to
select non-faulty program entities for each faulty entity. We
select the γ neighbors above or below a faulty entity. That
is, if γ = 5, at most 10 neighbors are selected (sometimes
there is less than 5 neighbors above or below the faulty one).
Intuitively, a large number of neighbors leads to high running
time, i.e., the time cost for training and applying the model.
But the relationship between the number of neighbors and
the wasted effort is not clear. In this section, we explore the
relationship between the wasted effort and the running time
for different numbers of neighbors. Note that the running time
includes both the time of training the model and the time of
applying the model to new faulty programs.

0

2

4

6

8

10

12

Jaxen HtmlParser

W
a

s
te

d
 e

ff
o

rt

Sampled subject program

Tarantula Ochiai

Jaccard M2

Ample Wong3

Fig. 4. A study of the impact of the base metrics used for determining the
initial ranking of program entities. The approach is slightly sensitive to this
tuning parameter.

6

7

8

9

10

50 100 150 200 250 300

W
a

s
te

d
 e

ff
o

rt

Running time in seconds

Jaxen

HtmlParser

neighbors

γ =5

γ =10

γ =20

γ =30

γ =40 γ =50

γ =5

γ

γ =10

γ =20

γ =30

γ =50 γ =40

Fig. 5. A study of the impact of the number of neighbors γ on the wasted
effort and the running time of MULTRIC. For low values of γ (γ ≤ 20 for
Jaxen and γ ≤ 10 for HtmlParser), there is a tradeoff between effectiveness
and performance.

We again consider two subject programs, Jaxen and Html-
Parser and vary the value of γ between 5 and 50. Each dot of
Fig. 5 gives the running time in seconds (x-axis) and the wasted
effort (y-axis). For the two subject programs, a line joins the
corresponding dots. With respect to the wasted effort, the best
choice is to set γ to 10. For Jaxen, γ = 20 takes slightly more
computation time than γ = 5 and there is a tradeoff between
the wasted effort and the running time. Interestingly, it is never
helpful to consider values of γ > 20 for Jaxen and γ > 10 for
HtmlParser. Beyond such thresholds, both the effectiveness and
the running time are worse and there is no tradeoff anymore.

Answer to RQ4. The number of neighbors in MULTRIC

impacts the wasted effort and the running time of fault local-
ization. A good choice is to set γ = 10, which corresponds to
selecting up to 20 non-faulty program entities for each faulty
program entities.

VI. THREATS TO VALIDITY

This paper proposes a learning-based approach to combin-
ing existing ranking metrics for fault localization. We discuss
threats to the validity of our work in three categories.

In our work, we choose methods as the granularity of fault
localization rather than statements. Existing work by Jones et
al. [12], Abreu et al. [2], and Naish et al. [18] investigates
fault localization with statements in C programs while Xu et
al. [31] addresses the basic blocks in Java programs. In our
work, we follow Steimann et al. [24], [25] use methods as the
program entities. Given the program spectra for statements, our
work can be easily to adapt to fault localization on statements
without further modification.

In Section III-C, we learn a ranking model to recommend
suspicious positions for new faults. We employ a classic
learning-to-rank algorithm, RankBoost [8], to build the learn-
able model. However, other learning-to-rank algorithms, such
as RankNet [3] or FRank [26], can be also applied to MULTRIC.
In experiments, we have not examined the results of other
algorithms. This may leads to a threat for the bias of a single
algorithm. In MULTRIC, other learning-to-rank algorithms can
be directly applied instead of RankBoost. Experimental results
should be further studied in the future.

In Section IV, we evaluate MULTRIC on over 5000 faults in
ten subject programs. Training faults for building the model
and new faults for validating the model are both selected from
the same subject program. That is, we only consider intra-
subject-program faults rather than inter-subject-program faults
in our experiments. In ideal scenarios, inter-subject-program
fault localization is more applicable than intra-subject-program
localization. However, limited by learning techniques, an effec-
tive learning model across projects is hard to build. A potential
solution is transfer learning [20], which is a recent field for
cross-project or cross-domain learning problems. Thus, in our
work, we propose MULTRIC to build intra-subject-program mod-
els. For a long-term subject program, a large amount of faults
accumulate in daily development and testing. This provides
the scenario of intra-subject-program fault localization. We can
apply MULTRIC to build the learnable model on past faults and
to rank faulty source code for new faults.

VII. RELATED WORK

To our knowledge, this paper is the first work, which learns
from multiple ranking metrics to improve fault localization. We
list the related work as follows.

Jones et al. [12] propose the first well-known ranking
metric, Tarantula, in spectrum-based fault localization. Abreu
et al. [2] design Ochiai and Jaccard, which are also widely-
studied and state-of-art ranking metrics. Jeffrey et al. [11]
develop a value replacement technique by examining covered
statements in failing test cases. Naish et al. [18] empirically
study effectiveness of existing ranking metrics on C programs

and propose Naish1 and Naish2 as two optimal ranking metrics
in theory.

Xie et al. [29], [30] summarize existing ranking metrics and
theoretically divide ranking metrics into equivalent groups. Lo
et al. [16] propose a comprehensive study on the relationship
among multiple existing ranking metrics and show that there is
no best single ranking metrics in practice. Steimann et al. [25]
investigate the threats to the validity in spectrum-based fault
localization. This work analyzes empirical results on method-
based fault localization in ten Java open-source programs.

Existing work has considered leveraging training data for
fault localization. Feng & Gupta [7] propose a Bayesian
network approach to modeling the dependency from source
code to testing results. In this work, an error flow graph is built
from randomly selected training sets to collect dependency
data. Yoo [33] designs a genetic programming approach to
organizing the spectrum of source code to automatically form
the ranking metric. In this approach, six out of 30 generated
ranking metrics have high effectiveness, including the best one,
GP13.

Debroy & Wong [5] combine three existing ranking metrics
(Tarantula, Ochiai, and Wong3) and localize faults based on
the consensus of ranking metrics. The most related work to
our paper is search-based fault localization by Wang et al.
[27]. They propose search-based methods, including simulated
annealing and genetic algorithms, to assign numeric weights to
ranking metrics. Their work evaluates the search-base methods
on 7 C program in SIR3. In contrast to above work [27],
our MULTRIC is a combination of existing ranking metrics
via learning-to-rank techniques. We model weights of ranking
metrics with functions and learn the weights via pairs of faulty
and non-faulty program entities. Such weighting strategy leads
MULTRIC to high effectiveness. Meanwhile, experiments in our
work use over 5000 Java faults while experiments in [7], [33],
[27] use less than 130 C faults.

Various aspects have been studied in fault localization.
Gong et al. [10] propose a framework of interactive fault
localization, which leverages simple user feedback to improve
the accuracy. Nguyen et al. [19] design a database-aware
approach, SQLook, for the scenario of fault localization in
dynamic web applications. Zhang et al. [35] propose FIFL, a
fault injecting approach to localizing faulty edits in evolving
programs. Xuan & Monperrus [32] develop test case purifica-
tion, which seperates test cases into small fractions to enhance
the test oracle for fault localization. Le & Lo [13] consider
the applicability of fault localization and develop an automatic
method for predicting effectiveness with features in faulty
programs.

Fault localization depends on a set of test cases. The cost of
labeling and executing test cases is expensive. Gong et al. [9]
design a diversity-maximization-speedup method for reducing
the cost of test case labeling. Mei et al. [17] and Zhang et
al. [34] focus on the test case prioritization, which ranks test
cases to find faults in the early stage. Fault localization can
be also used as a pre-phase in automatic source code repair
to determine the faulty position in repairing methods, such as
GenProg by Le Goues et al. [14] and Nopol by Demarco et
al. [6].

3Software-artifact Infrastructure Repository, http://sir.unl.edu/

VIII. CONCLUSION

Spectrum-based fault localization aims to detect the exact
position of faults in source code. In this paper, we propose
MULTRIC, a learning-based approach to combining multiple
ranking metrics. MULTRIC consists of two major phases, namely
learning and ranking. In the learning phase, MULTRIC selects
training pairs of faulty and non-faulty program entities to
weight existing ranking metrics; in the ranking phase, MULTRIC

combines the learned weights with existing ranking metrics to
form the final ranking for a new faulty program. Experimental
results show that MULTRIC can effectively localize Java faults,
comparing with state-of-art ranking metrics.

In future work, we plan to further improve the effectiveness
of our approach. We want to refine data selection strategy
to build a more effective model with a smaller amount of
training data. Moreover, we plan to empirically examine the
performance and the generality of our work on other Java and
C programs.

ACKNOWLEDGMENT

We thank Friedrich Steimann, Marcus Frenkel, and Rui
Abreu for sharing their fault data.

REFERENCES

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund. A practical
evaluation of spectrum-based fault localization. Journal of Systems and
Software, 82(11):1780–1792, 2009.

[2] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Indus-
trial Conference Practice and Research Techniques-MUTATION, 2007.
TAICPART-MUTATION 2007, pages 89–98. IEEE, 2007.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender. Learning to rank using gradient descent. In
Proceedings of the 22nd international conference on Machine learning,
pages 89–96. ACM, 2005.

[4] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight bug localization
with ample. In Proceedings of the sixth international symposium on
Automated analysis-driven debugging, pages 99–104. ACM, 2005.

[5] V. Debroy and W. E. Wong. A consensus-based strategy to improve
the quality of fault localization. Software: Practice and Experience,
43(8):989–1011, 2013.

[6] F. Demarco, J. Xuan, D. L. Berre, and M. Monperrus. Automatic
repair of buggy if conditions and missing preconditions with smt.
In Proceedings of the 6th International Workshop on Constraints in
Software Testing, Verification, and Analysis, pages 30–39. ACM, 2014.

[7] M. Feng and R. Gupta. Learning universal probabilistic models for
fault localization. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering,
pages 81–88. ACM, 2010.

[8] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. The Journal of machine learning
research, 4:933–969, 2003.

[9] L. Gong, D. Lo, L. Jiang, and H. Zhang. Diversity maximization
speedup for fault localization. In Automated Software Engineering
(ASE), 2012 Proceedings of the 27th IEEE/ACM International Con-
ference on, pages 30–39. IEEE, 2012.

[10] L. Gong, D. Lo, L. Jiang, and H. Zhang. Interactive fault localization
leveraging simple user feedback. In Software Maintenance (ICSM),
2012 28th IEEE International Conference on, pages 67–76. IEEE, 2012.

[11] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value
replacement. In Proceedings of the 2008 international symposium on
Software testing and analysis, pages 167–178. ACM, 2008.

[12] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test informa-
tion to assist fault localization. In Proceedings of the 24th international
conference on Software engineering, pages 467–477. ACM, 2002.

[13] T.-D. B. Le and D. Lo. Will fault localization work for these failures?
an automated approach to predict effectiveness of fault localization
tools. In Software Maintenance (ICSM), 2013 29th IEEE International
Conference on, pages 310–319. IEEE, 2013.

[14] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A
generic method for automatic software repair. Software Engineering,
IEEE Transactions on, 38(1):54–72, 2012.

[15] T.-Y. Liu. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval, 3(3):225–331, 2009.

[16] D. Lo, L. Jiang, F. Thung, A. Budi, et al. Extended comprehensive
study of association measures for fault localization. Journal of Software:
Evolution and Process, 2013.

[17] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel. A
static approach to prioritizing junit test cases. Software Engineering,
IEEE Transactions on, 38(6):1258–1275, 2012.

[18] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-
based software diagnosis. ACM Transactions on software engineering
and methodology (TOSEM), 20(3):11, 2011.

[19] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen.
Database-aware fault localization for dynamic web applications. In Soft-
ware Maintenance (ICSM), 2013 29th IEEE International Conference
on, pages 456–459. IEEE, 2013.

[20] S. J. Pan and Q. Yang. A survey on transfer learning. Knowledge and
Data Engineering, IEEE Transactions on, 22(10):1345–1359, 2010.

[21] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight fault-
localization using multiple coverage types. In Software Engineering,
2009. ICSE 2009. IEEE 31st International Conference on, pages 56–
66. IEEE, 2009.

[22] R. E. Schapire, Y. Freund, P. Bartlett, W. S. Lee, et al. Boosting the
margin: A new explanation for the effectiveness of voting methods. The
annals of statistics, 26(5):1651–1686, 1998.

[23] R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Machine learning, 37(3):297–336, 1999.

[24] F. Steimann and M. Frenkel. Improving coverage-based localization
of multiple faults using algorithms from integer linear programming.
In Software Reliability Engineering (ISSRE), 2012 IEEE 23rd Interna-
tional Symposium on, pages 121–130. IEEE, 2012.

[25] F. Steimann, M. Frenkel, and R. Abreu. Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators. In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pages 314–324. ACM, 2013.

[26] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. Frank: a
ranking method with fidelity loss. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 383–390. ACM, 2007.

[27] S. Wang, D. Lo, L. Jiang, H. C. Lau, et al. Search-based fault
localization. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, pages 556–559. IEEE
Computer Society, 2011.

[28] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai. Effective fault localization
using code coverage. In Proceedings of the 31st Annual International
Computer Software and Applications Conference-Volume 01, pages
449–456. IEEE Computer Society, 2007.

[29] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization. ACM
Transactions on Software Engineering and Methodology (TOSEM),
22(4):31, 2013.

[30] X. Xie, F.-C. Kuo, T. Chen, S. Yoo, and M. Harman. Provably
optimal and human-competitive results in sbse for spectrum based fault
localisation. In G. Ruhe and Y. Zhang, editors, Search Based Software
Engineering, volume 8084 of Lecture Notes in Computer Science, pages
224–238. Springer Berlin Heidelberg, 2013.

[31] J. Xu, Z. Zhang, W. Chan, T. Tse, and S. Li. A general noise-reduction
framework for fault localization of java programs. Information and
Software Technology, 55(5):880–896, 2013.

[32] J. Xuan and M. Monperrus. Test case purification for improving fault
localization. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE). ACM, 2014.

[33] S. Yoo. Evolving human competitive spectra-based fault localisation
techniques. In G. Fraser and J. T. de Souza, editors, Proceedings of the
4th International Symposium on Search-Based Software Engineering,
September 2012.

[34] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei. Bridging the
gap between the total and additional test-case prioritization strategies.
In Software Engineering (ICSE), 2013 35th International Conference
on, pages 192–201. IEEE, 2013.

[35] L. Zhang, L. Zhang, and S. Khurshid. Injecting mechanical faults
to localize developer faults for evolving software. In Proceedings of
the 2013 ACM SIGPLAN international conference on Object oriented
programming systems languages & applications, pages 765–784. ACM,
2013.

