
How do Multiple Pull Requests Change the Same Code:
A Study of Competing Pull Requests in GitHub

Xin Zhang†, Yang Chen†, Yongfeng Gu†, Weiqin Zou‡, Xiaoyuan Xie†, Xiangyang Jia†, Jifeng Xuan†∗
† School of Computer Science, Wuhan University, Wuhan 430072, China

{xinzhang , yangchen0800, yongfenggu, xxie, jxy, jxuan}@whu.edu.cn
‡ State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

wqzou@smail.nju.edu.cn

Abstract—GitHub is a widely used collaborative platform
for global software development. A pull request plays an im-
portant role in bridging code changes with version controlling.
Developers can freely and parallelly submit pull requests to
base branches and wait for the merge of their contributions.
However, several developers may submit pull requests to edit
the same lines of code; such pull requests result in a latent
collaborative conflict. We refer such pull requests that tend to
change the same lines and remain open during an overlapping
time period to as competing pull requests.

In this paper, we conduct a study on 9,476 competing pull
requests from 60 Java repositories in GitHub. The data are
collected by mining pull requests that are submitted in 2017
from top Java projects with the most forks. We explore how
multiple pull requests change the same code via answering four
research questions, including the distribution of competing pull
requests, the involved developers, the changed lines of code,
and the impact on pull request integration. Our study shows
that there indeed exist competing pull requests in GitHub: in
45 out of 60 repositories, over 31% of pull requests belong
to competing pull requests; 20 repositories have more than
100 groups of competing pull requests, each of which is
submitted by over five developers; 42 repositories have over
10% of competing pull requests with over 10 same lines of
code. Meanwhile, we observe that attributes of competing
pull requests do not have strong impacts on pull request
integration, comparing with other types of pull requests. Our
study provides a preliminary analysis for further research that
aims to detect and eliminate conflicts among competing pull
requests.

Keywords-Pull requests, collaborative development, merge
conflicts, GitHub

I. INTRODUCTION

GitHub is a widely-used platform for collaborative de-

velopment. Individual developers and companies create and

contribute to software repositories without the limitation

of locations and organizations. According to the official

statistics,up to March 2018, there are over 80 million reposi-

tories developed by 24 million developers in GitHub. GitHub

leverages pull requests to support interaction between de-

velopers and code repositories. A pull request consists of

code commits by a developer. Once the developer aims to

contribute to a repository, he/she can fork (i.e., clone) the

∗ Corresponding author

repository as an own repository and submit a pull request

of his/her changes to a base branch (i.e., a particular code

version); then a manager decides whether the pull request

can be merged into the branch or not.
Merging pull requests into repositories can cause a merge

conflict when developers make different changes to the same

lines in a branch. For instance, if a pull request is submitted

to update a piece of code that is already changed by someone

else, then a merge conflict appears [1]. It is challenging to

resolve merge conflicts during the collaborative development

among developers. Developers have spent much effort look-

ing for a straightforward solution to merge conflicts [22].
To address the problem of merge conflicts, Brun et al. [5]

have proposed Crystal, a leading proactive detection tool

that helps developers identify and further prevent merge

conflicts. Apel et al. [2] developed JDime, a structured

merge technique based on the analysis of source code syntax.

These methods and techniques enhance the effectiveness

of resolving merge conflicts for version control systems.

A recent empirical study by Accioly et al. [1] shows that

making use of semi-structured information inside source

code can help eliminate merge conflicts of version control

systems.
GitHub has a built-in feature that can detect the merge

conflict between a pull request and its base branch. The

branch manager, however, cannot always instantly respond

to newly-submitted pull requests as well as merge conflicts.

If two or more developers submit pull requests to update

the same code at the same time, a queue of pull requests

appear and await to be merged. The current implementation

of GitHub cannot directly recognize the inconsistence among

such pull requests.
In this paper, we refer those pull requests that remain

open during an overlapping time period and aim to change

the same code to as competing pull requests.1 Resolving

competing pull requests is beyond resolving merge conflicts:

a merge conflict detects the potential inconsistence between

a submitted pull request and its updated base branch; for the

updated branch, the edit is already integrated into the code

1This is named after the competing line change merge
conflict in the document of GitHub, http://help.github.com/articles/
resolving-a-merge-conflict-using-the-command-line/.

repository. In contrast, competing pull requests compare pull

requests that were simultaneously submitted by different de-

velopers and decide which pull request should be merged. It

is important to characterize and understand these competing

pull requests and further assist the branch manager to make

a decision. To the best of our knowledge, no prior work has

investigated competing pull requests in GitHub.

In this paper, we conducted a study of competing pull

requests on 9,476 competing pull requests from 60 most

popular Java repositories in GitHub. All the data are ex-

tracted by mining pull requests that are submitted in 2017

from the top 100 Java repositories with the most forks.

We collected competing pull requests by checking their

previous commits that are submitted to the same files and

collected the subsequent merge status through the whole life

cycle of these pull requests. We explore how multiple pull

requests change the same code via answering four Research

Questions (RQs), including the distribution of competing

pull requests, the involved developers, the changed lines of

code, and the impact on pull request integration.

Our study provides a preliminary study on competing

pull requests. On one hand, we found that there indeed

exist competing pull requests in GitHub: in 45 out of 60

repositories, over 31% of pull requests belong to competing

pull requests; 20 repositories have more than 100 groups of

competing pull requests that involve over five developers;

42 repositories have over 10% of competing pull requests

that aim to change over 10 same lines of code. On the other

hand, we observed that there only exists a weak correlation

between specific human-defined attributes of competing pull

requests and their merging results (i.e., merged or not in

future). We speculate that such weak correlation is caused

by the complex scenario of collaboration in competing pull

requests. Our study results can be used as a basis to support

further research work that detect and eliminate conflicts

among competing pull requests.

This paper makes the following major contributions:

1. We mined continuous data of six months from 60

most popular Java repositories in GitHub and collected

9,476 competing pull requests, i.e., pull requests that aim

to simultaneously change the same code.

2. We designed a study on competing pull requests via

answering four research questions, including the existence

of competing pull requests, the collaborative development,

the overlap of updated code, and the impact on pull request

integration.

3. We empirically analyzed the differences between com-

peting pull requests and other pull requests. The result

shows that competing pull requests are more difficult to be

characterized than other pull requests.

The remaining of this paper is organized as follows.

Section II presents the background and motivation. Section

III presents the study setup, including the data preparation

and four research questions. Section IV details the results

of our study. Section V discusses the threats to the validity.

Section VI lists the related work and Section VII concludes

this paper.

II. BACKGROUND AND MOTIVATION

We introduce the background of merging pull requests

and the motivation of studying competing pull requests.

A. Background

GitHub is a collaborative service hosting platform for

distributed version controlling. A manager of a project

can freely deploy the project on GitHub to attract global

developers for their code contributions. In the terminology

of GitHub, a deployed project is called a repository and a

parallel code version is called a branch. A default branch in a

repository is usually called a master branch. To contribute to

the repository, a developer can fork a repository on GitHub

as an own repository and update source code of a chosen

branch. To integrate the changed code to the repository, the

developer requests to merge the change into the original

base branch. In GitHub, the above merge is conducted via

submitting a pull request.

The design of pull requests is one of core mechanisms

of GitHub. A pull request, recording code changes in a

forked repository, is submitted by a developer to the original

repository [13]. A pull request consists of one or more

code commits, each of which records the change on one

or more files with a particular timestamp. Developers can

freely and parallelly submit pull requests to a repository

and a manager decides which pull request can be merged.

In collaborative development, the original base branch may

have been already updated before a developer submits a

new update via a pull request; then GitHub cannot integrate

the new update. This leads to a merge conflict. Two major

reasons can cause merge conflicts: one is a pull request

by someone else has been merged into the base branch;

the other is the branch manager changed the branch via a

commit (in this case, the branch manager does not need to

submit a pull request) [12]. Then the merge conflict will be

resolved by the manager manually. Due to the complexity

of code, a developer who is responsible for addressing

merge conflicts needs to spend much time understanding

the changes and resolving the merge conflicts.

B. Motivation – Competing Pull Requests

Scenario of competing pull requests. Several developers

may try to update the same line of code with different pull

requests. Once multiple developers submit pull requests to

the same code, a queue of pull requests is awaiting to be

reviewed and merged. This may lead to one or more merge

conflicts. Meanwhile, these submitted and unprocessed pull

requests are competitive with each other: only one or zero

among these pull requests can be directly integrated into the

base branch. In this paper, we use competing pull requests to

255 if (process == null) return;

279 if (isEqualToCurrentLocalizationValue (
280 locale,
281 processId,
282 name ,
283 name,
284 infoNode) == false) {
285 dynamicService.changeLocallzationName (
286 locale,
287 processId,
288 name,
289 infoNode) ;
290 localizationValuesChanged = true;
291 }

Pull request #1247 by Developer A on July 15, 2017

255 if (process == null) return;

279 if (isEqualToCurrentLocalizationValue (
locale, processId, name , name,
infoNode) == false) {

280 dynamicService.changeLocallzationName (
locale, processId, name, infoNode) ;

281 localizationValuesChanged = true;
282 }

Base branch Pull request #1292 by Developer M on July 29, 2017

255 if (process == null) {
256 return;
257 }

279 if (! isEqualToCurrentLocalizationValue (
280 locale,
281 processId,
282 name ,
283 name,
284 infoNode)) {
285 dynamicService.changeLocallzationName (
286 locale,
287 processId,
288 name,
289 infoNode) ;
290 localizationValuesChanged = true;
291 }

(a) (b) (c)

Figure 1. Example of competing pull requests in the repository Activiti/Activiti, including a code excerpt in the base branch (Figure 1(b)) and two pull
requests that aim to update the branch (Figures 1(a) and (c)). These two pull requests try to make changes via different edits. This leads to a scenario of
deciding which pull request should be merged into the branch. Pull request 1247 was created on July 7, 2017 while Pull request 1292 was created on July
29. The branch manager has finally merged Pull request 1292 into the branch.

denote the unprocessed pull requests that aim to update the

same code, then competing pull requests are grouped if they

are changing the same lines of code during an overlapping

time period.

All competing pull requests have to be manually checked

to identify which pull request should be merged. The sce-

nario of competing pull requests is more complex than the

scenario of merge conflicts in Section II-A. The scenario

of merge conflicts is to submit a pull request to change

an updated branch; it explores the conflict between a new

pull request and the already-updated code. The scenario of

competing pull requests is to decide which pull request is

the best change; it chooses a suitable change among multiple

contributions by developers.

Example of competing pull requests. Figure 1 illustrates

an example of two competing pull requests from the reposi-

tory Activiti/Activiti. Figure 1(b) is a code excerpt of a Java

class BpmnDeployer in a base branch; Figures. 1(a) and

1(c) are two pull requests by Developers A and M, who aim

to change the base branch, respectively.2 The pull request

in Figure 1(a) updates Lines 279 and 280; the pull request

in Figure 1(c) updates Lines 255, 279 and 280. Although

the pull request in Figure 1(a) only focuses on the code

style, both these pull requests try to change two or more

lines of code. These pull requests are submitted nearly at

the same time by two developers and remain open for an

overlapping time period. Then the branch manager has to

manually check these pull requests and choose to merge

one pull request or discard both. From the perspective of

the manager, these two pull requests are competing. GitHub

cannot automatically detect competing pull requests unless

2Two pull requests, http://api.github.com/repos/Activiti/Activiti/pulls/
1292 and http://api.github.com/repos/Activiti/Activiti/pulls/1247.

at least one of them is merged into the repository. Accepting

and merging one of these pull requests results in a merge

conflict; meanwhile, different competing pull requests aim

to update the same line via different ways. Therefore, even

a human manager can hardly decide the most valuable

pull request. A straightforward question is how many such

competing pull requests exist. We conduct a study to explore

competing pull requests in GitHub in this paper.

III. STUDY SETUP

In this study, we aim to explore how multiple pull requests

change the same code. This study is conducted based on the

concept of competing pull requests.

A. Competing Pull Requests

We define competing pull requests based on the definition

of code commits. Informally, a code commit can be viewed

as a set of changes to a base version of a repository. A

commit can be written as commit = (base, tc, {edit}),
where base is the base version that this commit wants to

update, tc is the time of creating this commit and {edit} is

a set of single-file edits. A single-file edit is the code edit

in a particular file; we define edit = (file, diff, te), where

file indicates a file to be updated, diff indicates the content

difference, and te indicates the time of this edit. In practice,

diff can be directly obtained by differentiating the base
version and the newly-changed code. In GitHub, a commit

(or an edit) does not contain an explicit end time; therefore,

we define the end time te of an edit as the time that a next

commit changes the same file, i.e., the time of creation of

the next commit.

A commit consists of a set of code edits while a pull

request consist of a set of commits. A pull request can

be directly defined as PR = (dev, {commit}), where dev

denotes the developer who submits the pull request and

{commit} denotes a set of commits.

In this study, we study how multiple pull requests change

the same code. To facilitate the statement, we refer the two

or more pull requests that aim to simultaneously modify

the same code to as a group of competing pull requests.

For instance, if two developers want to change the same

variable into different assignments, their changes cannot

be merged automatically. At least one of their changes

will be abandoned. Intuitively, in competing pull requests,

different pull requests compete with each other and the

branch manager has to manually decide which pull request

should be merged. We formally define a group of competing

pull requests as follows.

Definition 1. A group of competing pull requests (CPR

for short) is a set of pull requests, each of which contains

an edit that aim to update one or more same lines of code

and these edits have an overlapping time period. We refer

the same lines to as competing lines.

For instance, given an edit edit1 belonging to a commit

commit1 and its pull request PR1 and edit2 belonging to

commit2 and PR2, we say PR1 and PR2 are competing

pull requests, if the base versions base1 = base2, their

time tc1 < te2 and tc2 < te1 (i.e., edit1 and edit2 have

an overlap of their time periods), the content difference

diff1 and diff2 shares the same line, and developers

dev1 �= dev2.3 In short, if several unmerged pull requests

aim to change the same line of code, we consider them as

competing pull requests.

Recall the example in Figure 1. Pull requests 1247 by

Developer A and 1292 by Developer M contain two edits

that aim to update the same lines in the original code of

the base branch. Once the two edits share a time period,

we say these two pull requests form a group of competing

pull requests. From the perspective of human developers,

we can briefly summarize that Pull request 1247 tries to

change the code style and Pull request 1292 tries to update

the expressions; from the perspective of GitHub, both pull

requests are to change source code at the same lines.

Note that it is possible that more than two pull requests

change one same line. In this paper, a group of competing

pull requests contains all the pull requests that change the

same lines, i.e., the competing lines. That is, two different

groups of competing pull requests do not share the same

competing lines; meanwhile, two groups of competing pull

requests can share the same pull request. In practice, com-

peting lines may cross files. Counting all possibilities of

competing lines may lead to the “combinatorial explosion”

problem and cannot be exhaustively enumerated [11]. In our

work, we limit competing lines in each group of competing

pull requests only inside one file. This file that contains

3We do not consider the case that one developer submit two pull requests
to change the same line.

competing lines is call a competing file. If two pull requests

aim to edit two same lines from two files, we treat these

pull requests as two groups competing pull requests, each

group of which has competing lines in one competing file.

We detail the data collection of all competing pull requests

in Section III-C.

In addition, we define the concept of pseudo-competing
pull requests. This concept is used in the study in Section

IV-A for comparison.

Definition 2. A group of pseudo-competing pull requests
(denoted by XPRs) is a set of pull requests, each of which

contains an edit that aim to update the same file but no

shared lines and these edits have an overlapping time period.

That is, the pseudo-competing pull requests focus on editing

the same file but require no same lines.

B. Research Questions

Prior work in evaluating pull request integration mainly

focuses on the structured or non-structured merge conflicts

[1], [2], [7]. The aim of this paper is to explore the

competing pull requests and to further understand how these

pull requests impact the code integration. We design four

RQs and conduct a study to find out the answers.

RQ1. How do competing pull requests distribute? We

give a general statistics on the competing pull requests in

our dataset in RQ1.

RQ2. How many developers are involved in one
group of competing pull requests? Developers submit pull

requests to add their contributions to a repository. Competing

pull requests reveal the divergence between developers. In

RQ2, we examine how many developers are involved in one

group of competing pull requests.

RQ3. How much code is modified by competing pull
requests? From the definition of competing pull requests,

we require pull requests update at least one identical line

of code. In RQ3, we count the overlap of the code among

competing pull requests.

RQ4. How does competing pull requests affect the
merging of pull requests? We further analyze the impact

of competing pull requests on the pull request integration.

We leverage Spearman correlation coefficient to measure the

impact of competing pull requests on the merge decision.

C. Data Preparation

GitHub has automatically recorded the historical data

of pull requests. However, competing pull requests are

not recorded directly. Conducting the dataset of competing

pull requests requires extracting previous commits that are

submitted to the same files and collecting subsequent merge

results through the whole life cycle of pull requests. We

selected 60 Java repositories with the most forks in GitHub

and extracted their pull requests that are submitted in 2017.

Table I
SUMMARY OF 60 JAVA REPOSITORIES IN GITHUB IN THE STUDY

Repository statistics Min Median Max Average St.Dev. Total

Java files 36 787 18120 1712 2750 102725
Executable LoC 1416 73872 1463778 171926 270686 10315546

Fork 2290 3724 17587 4521 2920 271256
Releases 0 45 295 68 68 4068
Branches 1 7 231 24 44 1432

Pull requests 58 534 13919 1350 2222 81006
Issues 1 90 984 141 159 8444

Groups of CPR † 2 317 60301 3792 10695 227524
Groups of XPR † 3 298 486785 18309 72495 1098534

Pull requests in CPR 2 54 1321 158 292 9476
Pull requests in XPR 1 39 1288 109 228 6565

† We use CPR and XPR to denote competing pull requests and
pseudo-competing pull requests, respectively.

Table I shows the summary of our data collection from

these 60 Java repositories in GitHub.4 For sake of space, we

use CPR and XPR to denote competing pull requests (Defi-

nition 1) and pseudo-competing pull requests (Definition 2),

respectively. In total, 102K Java files and 10,315 KLoC are

examined in our study; 9,476 pull requests are considered

as competing pull requests. We collect and prepare the data

based on the following steps.

Repository selection. We select the top 100 Java reposi-

tories with the most forks in GitHub.5 We use GitHub API to

access the public event timeline and extract the raw data of

the whole year of 2017, i.e., pull requests that are submitted

from January 1st to December 31st, 2017.

Pull request extraction. To find out competing pull

requests, we need to match source code files to pull requests

and compare edited files among pull requests. The GitHub

API is used to exhaustively check commits in pull requests.

For each pull request, we extract its commit list and the list

of edited files by each commit. Given a specific branch, if

several pull requests tend to update the same source code

file, we record these pull requests and check whether the

pull requests are derived from the same version (branch) by

backtracking the base version of each pull request.

Code line analysis. We extract the time of creating each

involved commit and collect the end time of each edit

(see Section III-A). Then we trace back previous commits

and exhaustively compare the differences of edited files

by commits to check whether several pull requests tend to

update the same lines. We use the same diff tool in GitHub

to detect differences and trim extra spaces to avoid explicit

duplicates. Once two or more pull requests have edited at

least one same line and the edits contain an overlapping

time period, we label these pull requests as competing pull

requests. After this step, 61 repositories with competing pull

4Data of competing pull requests in our study are publicly available,
http://cstar.whu.edu.cn/p/cpr/.

5Java repositories with the most forks in GitHub, http://github.com/
search?l=java&o=desc&q=””&s=forks&type=Repositories.

requests are kept. All these repositories are with a large

amount of forks and active users; one exception repository is

jleetutorial/maven-project, which is a course-related reposi-

tory for learning the usage of Maven and contains only two

Java files. We removed this repository from our selection.

Finally, we have collected 9,476 competing pull requests

from 60 repositories.

Note that the interaction among pull requests in GitHub is

complex. For instance, some pull requests may be removed

from the repository by developers; in this case, we cannot

collect any information of these removed pull requests.

IV. STUDY RESULTS

A. RQ1. How do competing pull requests distribute?

Goal. RQ1 investigates the general statistics of the data

scale of competing pull requests.

Figure 2 presents the groups of pull requests of competing

and pseudo-competing pull requests in the log scale. The 4th

repository, i.e., elastic/elasticsearch, and the 16th repository,

i.e., udacity/ud851-Exercises, have the most groups of com-

peting pull requests and pseudo-competing pull requests, re-

spectively. During 12 months, 43 out of 60 repositories have

received over 100 groups of competing pull requests; 22

repositories have received over 1,000 groups of competing

pull requests.

Figure 3 presents box-plots of competing and pseudo-

competing pull requests in repositories. On one hand,

we show pull request groups of competing and pseudo-

competing pull requests in the log scale to understand the

distribution among 60 repositories. On the other hand, we

show the percentage of single pull requests in all pull

requests. As shown in Figure 3, a half of repositories

contain over 317 groups of competing pull requests and three

quarters of repositories have over 100 groups. Meanwhile,

in a half of repositories, over 44% of pull requests belong

to competing pull requests; in three quarters of repositories,

over 31% of pull requests belong to competing pull requests.

Finding 1. There indeed exist a large number of competing

pull requests in GitHub. In three quarters of repositories,

31% of pull requests belong to competing pull requests.

Exploring the impacts by competing pull requests can help

understand the complexity of collaborative development.

B. RQ2. How many developers are involved in one group
of competing pull requests?

Goal. RQ2 is to show how many developers have con-

tributed to competing pull requests. We leverage the distri-

bution of developers across all repositories to present the

counts of developers.

In Figure 4, we present the numbers of average contrib-

utors in competing and pseudo-competing pull requests of

all repositories. The 31th repository and the 16th repository

1-
sp

rin
g-

pr
oj

ec
ts

/s
pr

in
g-

bo
ot

2-
sp

rin
g-

pr
oj

ec
ts

/s
pr

in
g-

fra
m

ew
or

k
3-

ap
ac

he
/in

cu
ba

to
r-d

ub
bo

4-
el

as
tic

/e
la

st
ic

se
ar

ch
5-

ilu
w

at
ar

/ja
va

-d
es

ig
n-

pa
tte

rn
s

6-
zx

in
g/

zx
in

g
7-

ch
ec

ks
ty

le
/c

he
ck

st
yl

e
8-

ne
tty

/n
et

ty
9-

sq
ua

re
/o

kh
ttp

10
-P

hi
lJ

ay
/M

PA
nd

ro
id

C
ha

rt
11

-li
bg

dx
/li

bg
dx

12
-R

ea
ct

iv
eX

/R
xJ

av
a

13
-B

la
nk

j/A
nd

ro
id

U
til

C
od

e
14

-s
qu

ar
e/

re
tro

fit
15

-g
oo

gl
e/

gu
av

a
16

-u
da

ci
ty

/u
d8

51
-E

xe
rc

is
es

17
-a

pa
ch

e/
ka

fk
a

18
-m

yb
at

is
/m

yb
at

is
-3

19
-s

hu
zh

en
g/

zh
en

g
20

-a
lib

ab
a/

dr
ui

d
21

-a
pa

ch
e/

ha
do

op
22

-d
ee

pl
ea

rn
in

g4
j/d

ee
pl

ea
rn

in
g4

j
23

-b
um

pt
ec

h/
gl

id
e

24
-J

ak
eW

ha
rto

n/
bu

tte
rk

ni
fe

25
-a

lib
ab

a/
fa

st
js

on
26

-D
rK

LO
/T

el
eg

ra
m

27
-s

pr
in

g-
pr

oj
ec

ts
/s

pr
in

g-
pe

tc
lin

ic
28

-s
qu

ar
e/

pi
ca

ss
o

29
-p

oc
ke

th
ub

/P
oc

ke
tH

ub
30

-S
el

en
iu

m
H

Q
/s

el
en

iu
m

31
-u

da
ci

ty
/u

d8
51

-S
un

sh
in

e
32

-fa
ce

bo
ok

/fr
es

co
33

-a
pa

ch
e/

st
or

m
34

-b
ig

bl
ue

bu
tto

n/
bi

gb
lu

eb
ut

to
n

35
-fi

re
ba

se
/q

ui
ck

st
ar

t-a
nd

ro
id

36
-k

dn
25

1/
in

te
rv

ie
w

s
37

-g
oo

gl
e/

Ex
oP

la
ye

r
38

-s
qu

ar
e/

le
ak

ca
na

ry
39

-c
od

e4
cr

af
t/w

eb
m

ag
ic

40
-a

irb
nb

/lo
tti

e-
an

dr
oi

d
41

-a
pa

ch
e/

zo
ok

ee
pe

r
42

-C
ym

C
ha

d/
Ba

se
R

ec
yc

le
rV

ie
w

Ad
ap

te
rH

el
pe

r
43

-s
pr

in
g-

pr
oj

ec
ts

/s
pr

in
g-

se
cu

rit
y-

oa
ut

h
44

-x
et

or
th

io
/je

di
s

45
-o

w
nc

lo
ud

/a
nd

ro
id

46
-ju

ni
t-t

ea
m

/ju
ni

t4
47

-N
et

fli
x/

H
ys

tri
x

48
-a

pa
ch

e/
ca

m
el

49
-a

nd
ro

id
an

no
ta

tio
ns

/a
nd

ro
id

an
no

ta
tio

ns
50

-A
ct

iv
iti

/A
ct

iv
iti

51
-je

rs
ey

/je
rs

ey
52

-s
ig

na
la

pp
/S

ig
na

l-A
nd

ro
id

53
-p

re
st

od
b/

pr
es

to
54

-M
yC

AT
Ap

ac
he

/M
yc

at
-S

er
ve

r
55

-T
en

ce
nt

/ti
nk

er
56

-s
pr

in
g-

pr
oj

ec
ts

/s
pr

in
g-

se
cu

rit
y

57
-a

fo
lle

st
ad

/m
at

er
ia

l-d
ia

lo
gs

58
-a

pa
ch

e/
fli

nk
59

-ft
ct

ec
hn

h/
ftc

_a
pp

60
-n

ic
kb

ut
ch

er
/p

la
id

G
ro

up
s

of
 p

ul
l r

eq
ue

st
s

in
 lo

g
sc

al
e

101

102

103

104

105

106

Groups of CPR
Groups of XPR

Figure 2. Groups of competing pull requests and pseudo-competing pull requests from 60 repositories (in the log scale). We list the indexes (1 – 60) and
names of all repositories in details.

CPR XPR

101

102

103

104

105

G
ro

up
s

of
 C

PR
 a

nd
 X

PR
 in

 lo
g

sc
al

e

CPR XPR
0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f p
ul

l r
eq

ue
st

s
in

 C
PR

 a
nd

 X
PR

Figure 3. Box-plots of competing pull requests and pseudo-competing pull
requests in repositories. The left-side subfigure shows pull request groups
in the log scale; the right-side subfigure shows the percentage of single pull
requests in all pull requests.

have the largest numbers of average developers for com-

peting and pseudo-competing pull requests, respectively. By

checking the average developers of pull request groups, all

60 repositories contain over two developers in average. The

large number of developers in one group of competing pull

requests indicates that these developers try to simultaneously

update the same lines of code.

To further understand the distribution of developers, we

count the groups of pull requests with over five contributors

for all the repositories in Figure 5. Taking the 1st repository

for an example, more than 300 groups of competing pull

requests involve over five developers; that is, over five

0
2
4
6
8

10
12
14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

N
um

be
r o

f a
ve

ra
ge

co

nt
rib

ut
or

s i
n

CP
R

0

2

4

6

8

10

12

14

N
um

be
r o

f a
ve

ra
ge

co

nt
rib

ut
or

s i
n

XP
R

Figure 4. Number of average contributors in competing pull requests and
pseudo-competing pull requests in all repositories.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
Repositery index

100

101

102

103

104

105

106

G
ro

up
s

of
 p

ul
l r

eq
ue

st
s

w
ith

 o
ve

r 5
 c

on
tr

ib
ut

or
s

in
 lo

g
sc

al
e

CPR
XPR

Figure 5. Groups of pull requests over five contributors for all the
repositories in the log scale.

developers try to change the same code into different ways

for all these groups of competing pull requests. As shown

in Figure 5, 20 out of 60 repositories have more than

100 groups of competing pull requests, each of which is

submitted by over five developers.

Finding 2. In average, most repositories have competing

pull requests that involve two to three developers. We

observe that 20 out of 60 repositories have more than 100

groups of competing pull requests with five developers. This

indicates that resolving the competition among pull requests

by multiple developers can be expensive in labor cost.

C. RQ3. How much code is modified by competing pull
requests?

Goal. The nature of competition among pull requests is

the potential conflicts among updated code at the same lines.

We employ RQ3 to explore how many lines of code are

updated at the same time.

Figure 6 presents the counts of competing lines in com-

peting pull requests for each repository. We can observe that

many box-plots contain a number of outliers. As shown in

Figure 6, although the median counts of competing lines are

two or three, 21 out of 60 repositories have at least one group

of competing pull requests with over 100 competing lines; 7

repositories even have competing pull requests with over 200

competing lines. Meanwhile, in 46 repositories, 25% groups

of competing pull requests have over 5 competing lines; in

9 repositories, 25% groups of competing pull requests have

over 10 competing lines; this fact indicates that there exist

a large number of groups of competing pull requests that

aim to update over 10 same lines of code into different

code. Thus, a branch manager who tries to address the

problem of competing pull requests has to spend much effort

understanding the context and the semantic of these newly

submitted pull requests.

To further understand competing lines, we use Figure 7

to illustrate the accumulation of groups of competing pull

requests by counting the number of competing lines for each

repository. Considering the groups of competing pull re-

quests, 42 out of 60 repositories have over 10% of competing

pull requests with over 10 competing lines; 21 repositories

have over 20% of competing pull requests with over 10

competing lines; 3 repositories have over 30% with over 10

competing lines. Considering the number of competing lines,

16 out of 60 repositories have over 10% of competing pull

requests with over 20 competing lines; 5 repositories have

over 10% with over 30 competing lines. Such a large number

of competing lines lead to the high complexity of choosing a

suitable pull request. A possible solution to addressing these

competing pull requests is to set the number of competing

lines during the submission of pull requests.

Finding 3. There exist a large number of competing lines

in competing pull requests. We observe that 42 out of 60

repositories have over 10% of competing pull requests with

over 10 competing lines. Our study implies that a new

way of resolving these competing lines in competing pull

requests is in urgent need in GitHub.

D. RQ4. How does competing pull requests affect the merg-
ing of pull requests?

Goal. We leverage RQ4 to analyze the impact of compet-

ing pull requests on the merge result. Intuitively, competing

pull requests may result in a more complex scenario than

common pull requests. The competition among pull requests

makes the integration of pull request difficult. We employ

the Spearman correlation coefficient and conduct two exper-

iments to show the impact of competing pull requests.

We extract 10 attributes of pull requests and evaluate their

impacts on whether a pull request is merged. Table II lists

these 10 attributes A1 to A5 and B1 to B5 and the merge

result Y . We use attributes A1 to A5 to characterize single

pull requests and use attributes B1 to B5 to characterize

groups of pull requests. In addition, all attributes A1 to A5
can be used to describe groups of pull requests by calculating

the average value of each group. For instance, a group of

pull requests can be measured by the average of A1 of each

pull request. Therefore, the aim of RQ4 is to understand

which attribute has a strong correlation to the merge result

of a pull request; meanwhile, we aim to understand which

type of pull requests has stronger correlations.

We employ Spearman correlation coefficient to investi-

gate the correlation between two attributes. The Spearman

correlation coefficient is a non-parametric measure of rank

correlations. This measurement describes the statistical de-

pendency between the rankings of two attributes via assess-

ing how well the relationship between two attributes using a

monotonic function [8]. We briefly introduce the definition

of Spearman correlation coefficient as follows. For a sample

of size n, given two attributes X and Y , each of n samples

Xi and Yi (1 ≤ i ≤ n) can be converted into ranks, i.e.,

rXi and rYi . The Spearman correlation coefficient s(X,Y)
of X and Y is computed from:

s(X,Y) =
cov(rX , rY)

σrXσrY

where cov(rX , rY) is the covariance of the rank variables

of X and Y and σrX and σrY are the standard deviations

of the rank variables of X and Y . The absolute value

of Spearman correlation coefficient s(X,Y) indicates the

correlation between X and Y ; the positive or negative

value indicates that the correlation is positive or negative.

Meanwhile, the p-value is used to identify the statistical

significance.

We compare Spearman correlation coefficient among three

types of single pull requests. Let E1 – CPR, E2 – XPR,

and E3 – APR denote all single pull requests of competing

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
Repository index

10

100

C
ou

nt
 o

f c
om

pe
tin

g
lin

es
 in

 C
PR

 in
 lo

g
sc

al
e

Figure 6. Count of competing lines in competing pull requests in the log scale for each repository.

0 10 20 30 40 50 60
Repository index

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f t
he

 g
ro

up
s

of
 C

PR

with [10,20) competing lines
with [20,30) competing lines
with over 30 competing lines

Figure 7. Accumulation of groups of competing pull requests when counting the number of competing lines.

Table II
ATTRIBUTES OF PULL REQUESTS UNDER EVALUATION

Attribute index Attribute description

A1 Number of commits
A2 Number of edited files
A3 Number of previously merged pull requests by a developer
A4 Number of added lines in diff
A5 Number of deleted lines in diff
B1 Number of developers
B2 Number of competing lines
B3 Number of edits for the competing file
B4 LoC of comments
B5 Number of messages

Y Merge result – a pull request is merged or not, i.e., 1 or 0.

pull requests, pseudo-competing pull requests, and any pull

requests, respectively. Then for all these single pull requests,

we present the correlation between attributes A1 to A5 and

Y . Table III shows the correlation coefficient and p-values

of three types of pull requests.

As shown in Table III, among five attributes of pull

requests, A3, i.e., the number of previous merged pull

requests by the same developer, have strongest correlation

with the merge results of pull requests. In E1 – CPR and

E2 – XPR, the attribute with the weakest correlation is A4,

i.e., the number of added lines while in E3 – APR, the

weakest one is A5, i.e., the number of deleted lines. The

p-values show that the calculation of Spearman correlation

coefficient for all correlations is statistically significant.

Comparing the correlation across E1, E2, and E3, two

attributes A2 and A5 of CPR have stronger impacts on the

merge results than those of XPR; three attributes A1, A3,

and A4 of CPR have weaker impacts on the merge results

than those of XPR. For APR, four attributes A1, A2, A3, and

A5 win the strongest impacts on the merge results among the

three types of pull requests in comparison. We can conclude

that single pull requests of competing pull requests and

pseudo-competing pull requests behave similar; among five

attributes in the experiment, we have not observed strong

impacts in CPR or XPR, comparing with APR. We can

speculate that both competing pull requests and pseudo-

competing pull requests are more complex than general pull

requests: attributes in the study do not strongly indicate the

merge results.

After comparing the impacts from single pull re-

quests, we compare the impacts of groups of compet-

ing pull requests and pseudo-competing pull requests. Let

E4 – groups of CPR and E5 – groups of XPR denote all

Table III
SPEARMAN CORRELATION COEFFICIENT BETWEEN ATTRIBUTES OF SINGLE PULL REQUESTS AND THE MERGE RESULT

Attribute E1 – CPR E2 – XPR E3 – APR
correlation p-value correlation p-value correlation p-value

A1 – Commits 0.0407 7.44E-05 0.0453 1.00E-05 -0.1592 4.76E-114
A2 – Edited files 0.0577 1.90E-08 0.0298 0.0037 -0.1484 3.38E-99
A3 – Previous merge 0.6246 0.0000 0.6685 0.0000 0.1913 1.02E-164
A4 – Added lines -0.0045 0.6633 -0.0261 0.0110 -0.1801 4.70E-146
A5 – Deleted lines 0.0581 1.46E-08 0.0514 5.57E-07 -0.0638 1.37E-19

Table IV
SPEARMAN CORRELATION COEFFICIENT BETWEEN ATTRIBUTES OF

GROUPS OF COMPETING PULL REQUESTS AND THE MERGE RESULT

Attribute E4 – Groups of CPR E5 – Groups of XPR
correlation p-value correlation p-value

Avg. A1 – Commits † -0.0065 0.0018 -0.3431 0.0000
Avg. A2 – Edited files -0.0297 1.28E-45 -0.5159 0.0000
Avg. A3–Previous merge 0.7290 0.0000 0.8090 0.0000
Avg. A4 – Added lines -0.0619 9.62E-192 -0.5271 0.0000
Avg. A5 – Deleted lines -0.0528 6.02E-140 -0.2993 0.0000
B1 – Developers 0.0886 0.0000 0.1443 0.0000
B2 – Competing lines 0.0012 0.5624 0.0198 4.20E-54
B3 – Edits 0.1524 0.0000 -0.1308 0.0000
B4 – LoC of comments -0.0468 1.22E-110 -0.1321 0.0000
B5 – Messages 0.0563 3.30E-159 -0.4540 0.0000

† Avg. is short for the average of values.

groups of competing pull requests and pseudo-competing

pull requests, respectively. We present the correlation be-

tween attributes A1 to A5 as well as B1 to B5 and Y .

Table IV shows the correlation coefficient and p-values of

two types of pull request groups. For A1 to A5, we calculate

the average values because a group of pull requests contains

one value for each pull request. For Y of pull request groups,

Y = 1 if at least one pull request in the group is merged,

else Y = 0.

As shown in Table IV, among ten attributes of pull re-

quests, A3, i.e., the number of previous merged pull requests

by the same developers, have strongest correlation with the

merge results of pull requests, in both E4 – groups of CPR

and E5 – groups of XPR; meanwhile, the attribute with the

weakest correlation is B2, i.e., the number of competing

lines in a group. The p-values show that the calculation

of Spearman correlation coefficient for all correlations is

statistically significant.

Comparing the correlation across E4 and E5, we can

surprisingly observe that nine out of ten attributes of E5
have stronger correlation values than those of E4. That is,

the correlation of competing pull requests between attributes

and the merge results is much weaker than the correlation of

pseudo-competing pull requests. We speculate that attributes

of competing pull requests cannot imply whether a pull

request in the group can be merged, comparing with pseudo-

competing pull requests. A reason for this fact is that the

scenario of competing pull requests are more complex than

that of pseudo-competing pull requests. Competing pull

requests do not perform strong impacts to the merge results.

We can further infer that addressing competing pull requests

as well as their merge conflicts leads to high labor cost of

developers.

Finding 4. We observe that the number of previously

merged pull requests by a developer has the strongest

impact on the merge result. Meanwhile, we observe that

attributes of groups of competing pull requests have no

strong correlations with the merge result. We speculate that

this is caused by the complex scenario of competing pull

requests.

V. THREATS TO VALIDITY

Conduct validity. The dataset of our study is conducted

based on mining top 100 Java repositories in GitHub. After

data preparation, 60 repositories with 9,476 competing pull

requests for one year are kept in the study. The data scale

in our study could be larger. We notice that crawling pull

requests with previous commits that target the same files is

time-consuming due to the storage mechanism of GitHub.

We believe a study with a large dataset can reveal more

findings of competing pull requests.

Internal validity. In our study, we have not considered

the case of file deletion. The definition of competing pull

requests is limited to updating an existing file. Submitting

a pull request that aims to update a deleted file can be

viewed as a kind of competing pull requests. However, as

the first study on this problem, we omit the case of file

deletion for the sake of clear description. Another internal

validity is that in one group of competing pull requests, we

limit competing lines in only one file. Therefore, if two

pull requests try to update same lines from two files, we

define these competing pull requests in two groups with

different competing lines. It is possible to consider multiple

files in one group of competing pull requests. However, the

exhaustive enumeration of all the competing pull requests

leads to a large amount of calculation. In our study, we define

competing files in one group competing pull requests appear

in only one file as a trade-off between the enumeration of

possibilities and the resource of calculation.

External validity. Our study only investigates Java repos-

itories on GitHub. We cannot guarantee that our findings

can be directly generalized to repositories with other pro-

gramming languages. Another external validity is all pull

requests are submitted in 2017. A large study on pull

requests in several different years can explain the ability

of generalization.

VI. RELATED WORK

In this paper, we conduct a study on competing pull

requests in GitHub to explore how multiple pull requests

change the same code. We summarize the related work in

three dimensions.

Change conflicts. Many empirical studies on conflicts

have been conducted to understand the negative impacts of

frequent conflicts on daily collaborative development. Perry

et al. [21] have studied the collaborative development in a

large-scale industrial project in 2001. They found that the

high degree of parallel changes in a company has a signif-

icant correlation with the number of defects. Zimmermann

et al. [27] have investigated historical data of four large-

scale and open-source projects on CVS. Their study found

that there are 23% to 47% commits that can cause conflicts.

These conflicts have wasted decision makers a considerable

time and effort on the merge of conflicts. Brun et al. [6]

and Kasi & Sarma [19] analyzed open-source software on

GitHub. They pointed out that conflicts are normal and

harmful in daily collaborative; early detection of conflicts

can improve the productivity as well as the quality of

projects. Besides the work of change conflicts, existing work

has explored the change-related defects. Macho et al. [20]

predicted build co-changes via analyzing code changes;

Jaafar et al. [17] have examined the impacts of design

pattern as well as anti-patterns on changes and defects.

Xuan et al. [24] have analyzed the changes of test cases via

refactoring. A recent study by Huijgens et al. [16] infers the

predictive ability of software metrics for continuous delivery

projects via data mining on logs.

Tool support for merging. To better solve the merge

conflicts, researchers have proposed variety of novel merge

tools. GNU diff3 [10] is a typical unstructured line-based

merge tool. The drawback of unstructured tools is ordering
conflicts, i.e., the conflict of order changing of certain code

elements, by mistake [3]. To address the issues of unstruc-

tured merge tools, JDime by Apel et al. [2] is proposed to

perform the structured merge. JDime merges commits with

potential conflicts according to the difference of abstract syn-

tax trees. The structured method of merging can avoid many

ordering conflicts that unstructured tools cannot correctly

identify. As a trade-off between unstructured and structured

tools for merging changes, Apel et al. [3] have proposed

FSTMerge, a semi-structured one. FSTMerge uses program

structure trees to represent programs and treat the process

of merging commits as merging subtrees. A recent study

by Accioly et al. [1] has examined 125 Java repositories

on GitHub with the semi-structured tool, FSTMerge. This

study explored patterns and frequencies of conflicts among

the total 70K merges.

Factors on merging. Many studies focused on finding

potential factors that have strong influences on the de-

cision of merging changes. Dabbish et al. [9] organized

an interview of 24 developers with the topic of social

collaborative development on GitHub. They found that pull

requests by a developer are more likely to be merged if

the developer have more social contributions in coding.

Gousios et al. [14] studied the pull-request model in GitHub

and proposed 15 factors that can influence the acceptance of

pull requests. These factors include multiple aspects, such as

recent activities by developers, project information, and code

quality metrics. Additionally, they further built a random

forest model to predict the acceptance of pull requests. In

their follow-up work, Gousios et al. [15] have conducted a

survey of 749 project integrators and investigated challenges

and problems in the pull-request model. Zhu et al. [25], [26]

have investigated patterns and effectiveness of code changes

in GitHub. Xie et al. [23] studied the impact on the human-

focus factors of debugging. Jiang et al. [18] conducted a

study on inactive developers to understand the status of

these developers in GitHub. Recently, Beller et al. [4] have

conducted an explorative analysis to investigate the impacts

between continuous integration and GitHub.

VII. CONCLUSIONS

We design a study on competing pull requests to un-

derstand how multiple pull requests change the same code

in GitHub. In the study, we collect 9,476 competing pull

requests from 60 Java repositories with the most forks. Our

result shows that the competing pull requests frequently exist

in repositories in GitHub; the scenario of competing pull

requests is more complex than that of other pull requests

and competing pull requests have low correlation with the

merge of pull requests. This is the first preliminary study

that explores the complexity of competing pull requests in

GitHub.

The reason for the weak correlation between human-

defined attributes of competing pull requests and the merge

results is unclear. We plan to design a detailed study to

understand whether the weak correlation is caused by the

complexity of competing pull requests. We also plan to

conduct a detailed study on a large number of competing

pull requests.

ACKNOWLEDGMENT

The work is supported by the National Key R&D Program

of China under Grant No. 2018YFB1003901, the National

Natural Science Foundation of China under Grant Nos.

61502345 and 61572375, the Young Elite Scientists Spon-

sorship Program By CAST under Grant No. 2015QNRC001,

and the Technological Innovation Projects of Hubei Province

under Grant No. 2017AAA125.

REFERENCES

[1] P. R. G. Accioly, P. Borba, and G. Cavalcanti. Understanding
semi-structured merge conflict characteristics in open-source
java projects. Empirical Software Engineering, 23(4):2051–
2085, 2018.

[2] S. Apel, O. Leßenich, and C. Lengauer. Structured merge
with auto-tuning: balancing precision and performance. In
IEEE/ACM International Conference on Automated Software
Engineering, ASE ’12, Essen, Germany, September 3-7, 2012,
pages 120–129, 2012.

[3] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner.
Semistructured merge: rethinking merge in revision control
systems. In 19th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE) and 13th European
Software Engineering Conference (ESEC), Szeged, Hungary,
September 5-9, 2011, pages 190–200, 2011.

[4] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke
the build: an explorative analysis of travis CI with github. In
Proceedings of the 14th International Conference on Mining
Software Repositories, MSR ’17, Buenos Aires, Argentina,
May 20-28, 2017, pages 356–367, 2017.

[5] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive
detection of collaboration conflicts. In SIGSOFT/FSE’11 19th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-19) and ESEC’11: 13th European Soft-
ware Engineering Conference (ESEC-13), Szeged, Hungary,
September 5-9, 2011, pages 168–178, 2011.

[6] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Early
detection of collaboration conflicts and risks. IEEE Trans.
Software Eng., 39(10):1358–1375, 2013.

[7] G. Cavalcanti, P. Borba, and P. Accioly. Evaluating and
improving semistructured merge. Proc. ACM Program. Lang.,
1(OOPSLA):59:1–59:27, Oct. 2017.

[8] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken. Applied
multiple regression/correlation analysis for the behavioral
sciences. Routledge, 2013.

[9] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb.
Social coding in github: transparency and collaboration in an
open software repository. In Computer Supported Cooper-
ative Work, CSCW ’12, Seattle, WA, USA, February 11-15,
2012, pages 1277–1286, 2012.

[10] F. S. Foundation. Comparing and merging files. http://www.
gnu.org/software/diffutils/manual/diffutils.html, 2016.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman
and company, 1979.

[12] GitHub. About merge conflicts. http://help.github.com/
articles/resolving-a-merge-conflict-on-github/, 2018.

[13] GitHub. About pull requests. http://help.github.com/articles/
about-pull-requests/, 2018.

[14] G. Gousios, M. Pinzger, and A. van Deursen. An exploratory
study of the pull-based software development model. In 36th
International Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014, pages 345–355,
2014.

[15] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen.
Work practices and challenges in pull-based development:
The integrator’s perspective. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE ’15, Florence,
Italy, May 16-24, 2015, Volume 1, pages 358–368, 2015.

[16] H. Huijgens, R. Lamping, D. Stevens, H. Rothengatter,
G. Gousios, and D. Romano. Strong agile metrics: mining
log data to determine predictive power of software metrics
for continuous delivery teams. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE ’17, Paderborn, Germany, September 4-8, 2017,
pages 866–871, 2017.

[17] F. Jaafar, Y. Guéhéneuc, S. Hamel, F. Khomh, and M. Zulker-
nine. Evaluating the impact of design pattern and anti-pattern
dependencies on changes and faults. Empirical Software
Engineering, 21(3):896–931, 2016.

[18] J. Jiang, D. Lo, X. Ma, F. Feng, and L. Zhang. Understanding
inactive yet available assignees in github. Information &
Software Technology, 91:44–55, 2017.

[19] B. K. Kasi and A. Sarma. Cassandra: proactive conflict
minimization through optimized task scheduling. In 35th
International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pages 732–741,
2013.

[20] C. Macho, S. McIntosh, and M. Pinzger. Predicting build co-
changes with source code change and commit categories. In
IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering, SANER ’16, Suita, Osaka,
Japan, March 14-18, 2016 - Volume 1, pages 541–551, 2016.

[21] D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes
in large-scale software development: an observational case
study. ACM Trans. Softw. Eng. Methodol., 10(3):308–337,
2001.

[22] Stackoverflow. Resolving a merge conflict. http:
//stackoverflow.com/search?q=resolving+a+merge+conflict,
2018.

[23] X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu. Revisit
of automatic debugging via human focus-tracking analysis. In
Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, Austin, TX, USA, May 14-22, 2016,
pages 808–819, 2016.

[24] J. Xuan, B. Cornu, M. Martinez, B. Baudry, L. Seinturier,
and M. Monperrus. B-refactoring: Automatic test code
refactoring to improve dynamic analysis. Information &
Software Technology, 76:65–80, 2016.

[25] J. Zhu, M. Zhou, and A. Mockus. Patterns of folder use
and project popularity: a case study of github repositories.
In 2014 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’14, Torino,
Italy, September 18-19, 2014, pages 30:1–30:4, 2014.

[26] J. Zhu, M. Zhou, and A. Mockus. Effectiveness of code
contribution: from patch-based to pull-request-based tools.
In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE
’16, Seattle, WA, USA, November 13-18, 2016, pages 871–
882, 2016.

[27] T. Zimmermann. Mining workspace updates in CVS. In
Fourth International Workshop on Mining Software Reposi-
tories, MSR ’07 (ICSE Workshop), Minneapolis, MN, USA,
pages 1–11, 2007.

