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a b s t r a c t 

Context: Developers design test suites to verify that software meets its expected behaviors. Many dy- 

namic analysis techniques are performed on the exploitation of execution traces from test cases. In prac- 

tice, one test case may imply various behaviors. However, the execution of a test case only yields one 

trace, which can hide the others. 

Objective: In this article, we propose a new technique of test code refactoring, called B-Refactoring. The 

idea behind B-Refactoring is to split a test case into small test fragments, which cover a simpler part of 

the control flow to provide better support for dynamic analysis. 

Method: For a given dynamic analysis technique, B-Refactoring monitors the execution of test cases and 

constructs small test cases without loss of the testability. We apply B-Refactoring to assist two existing 

analysis tasks: automatic repair of if -condition bugs and automatic analysis of exception contracts. 

Results: Experimental results show that B-Refactoring can effectively im prove the execution traces of the 

test suite. Real-world bugs that could not be previously fixed with the original test suites are fixed after 

applying B-Refactoring; meanwhile, exception contracts are better verified via applying B-Refactoring to 

original test suites. 

Conclusions: We conclude that applying B-Refactoring improves the execution traces of test cases for 

dynamic analysis. This improvement can enhance existing dynamic analysis tasks. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Developers design and write test suites to automatically verify

hat software meets its expected behaviors. For instance, in regres-

ion testing, the role of a test suite is to catch new bugs – the

egressions – after changes [40] . Test suites are used in a wide

ange of dynamic analysis techniques: in fault localization, a test

uite is executed for inferring the location of bugs by reasoning on

ode coverage [19] ; in invariant discovery, input points in a test

uite are used to infer likely program invariants [10] ; in software

epair, a test suite is employed to verify the behavior of synthe-

ized patches [23] . Many dynamic analysis techniques are based

n the exploitation of execution traces obtained by each test case

5,10,40] . 
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Different types of dynamic analysis techniques require different

ypes of traces. The accuracy of dynamic analysis depends on the

tructure of those traces, such as length, diversity, redundancy, etc.

or example, several traces that cover the same paths with differ-

nt input values are very useful for discovering program invari-

nts [10] ; fault localization benefits from traces that cover differ-

nt execution paths [5] and that are triggered by assertions in dif-

erent test cases [54] . However, in practice, one manually-written

est case results in one single trace during test suite execution;

est suite execution traces can be optimal with respect to test suite

omprehension (from the human viewpoint by authors of the test

uite) but might be suboptimal with respect to other criteria (from

he viewpoint of dynamic analysis techniques). 

Test code refactoring is a family of methods, which improve

est code via program transformation without changing behaviors

f the test code [49] . In this article, we propose a new kind of test

ode refactoring, which focuses on the design of test cases, directly

or improving dynamic analysis techniques. Instead of having a

http://dx.doi.org/10.1016/j.infsof.2016.04.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.04.016&domain=pdf
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single test suite used for many analysis tasks, our hypothesis is that

a system can automatically optimize the design of a test suite with

respect to the requirements of a given dynamic analysis technique .

For instance, given an original test suite, developers can have an

optimized version with respect to fault localization as well as an-

other optimized version with respect to automatic software repair.

This optimization can be made on demand for a specific type of

dynamic analysis. The optimized test suite is used as the input of

dynamic analysis without manual checking by developers. 

In this paper, we propose a novel automated test code refac-

toring system dedicated to dynamic analysis, called B-Refactoring, 1 

detects and splits impure test cases. In our work, an impure test

case is a test case, which executes an unprocessable path in one

dynamic analysis technique. The idea behind B-Refactoring is to

split a test case into small “test fragments”, where each fragment

is a completely valid test case and covers a simple part of the con-

trol flow ; test fragments after splitting provide better support for

dynamic analysis. A purified test suite after applying B-Refactoring

does not change the test behaviors of the original one: it triggers

exactly the same set of behaviors as the original test suite and de-

tects exactly the same bugs. However, it produces a different set of

execution traces. This set of traces suits better for the targeted dy-

namic program analysis. Note that our definition of purity is spe-

cific to test cases and is completely different from the one used in

the programming language literature (e.g., [50] ). 

A purified test suite after applying B-Refactoring can be em-

ployed to temporarily replace the original test suite in a given

dynamic analysis technique. Based on such replacement, perfor-

mance of dynamic analysis can be enhanced. To evaluate our

approach B-Refactoring, we consider two dynamic analysis tech-

niques, one in the domain of automatic software repair [9,52] and

the other in the context of dynamic verification of exception con-

tracts [8] . We briefly present the case of software repair here and

present in details the dynamic verification of exception contracts

in Section 5.2.2 . For software repair, we consider Nopol [52] , an

automatic repair system for bugs in if conditions. Nopol employs

a dynamic analysis technique that is sensitive to the design of test

suites. The efficiency of Nopol depends on whether the same test

case executes both then and else branches of an if . This forms

a refactoring criterion that is given as input to B-Refactoring. In our

dataset, we show that B-Refactoring improves the test execution on

if s and unlocks new bugs which are able to be fixed by purified test

suites . 

Prior work . Our work [54] shows that traces by an original test

suite are suboptimal with respect to fault localization . The origi-

nal test suite is updated to enhance the usage of assertions in fault

localization. In the current article, the goal and technique are dif-

ferent, B-Refactoring refactors the whole test suite according to a

given dynamic analysis technique . Section 6.2 explain the differences

between the proposed technique in this article and our prior work.

This article makes the following major contributions: 

• We formulate the problem of automatic test code refactoring

for dynamic analysis. The concept of pure and impure test cases

is generalized to any type of program element. 
• We propose B-Refactoring, an approach to automatically refac-

toring test code according to a specific criterion. This approach

detects and refactors impure test cases based on analyzing exe-

cution traces. The test suite after refactoring consists of smaller

test cases that do not reduce the potential of bug detection. 
• We apply B-Refactoring to assist two existing dynamic analysis

tasks from the literature: automatic repair of if -condition bugs
1 B-Refactoring is short for Banana-Refactoring. We name our approach with Ba- 

nana because we split a test case as splitting a banana in the ice cream named 

Banana Split. 

S

and automatic analysis of exception contracts. Three real-world

bugs that could not be fixed with original test suites are em-

pirically evaluated after B-Refactoring; exception contracts are

better verified by applying B-Refactoring to original test suites. 

The remainder of this article is organized as follows. In

ection 2 , we introduce the background and motivation of B-

efactoring. In Section 3 , we define the problem of refactoring test

ode for dynamic analysis and propose our approach B-Refactoring.

n Section 4.2 , we evaluate our approach on five open-source

rojects; in Section 5 , we apply the approach to automatic re-

air and exception contract analysis. Section 6 details discussions

nd threats to the validity. Section 7 lists the related work and

ection 8 concludes our work. Section Appendix describes two case

tudies of repairing real-world bugs. 

. Background and motivation 

In this section, we present one scenario where test code refac-

oring improves the automatic repair of if -condition bugs. How-

ver, test code refactoring is a generic concept and can be applied

rior to other dynamic analysis techniques beyond software repair.

nother application scenario in the realm of exception handling

an be found in Section 5.2.2 . 

.1. Real-world example in automatic repair: Apache commons math 

41473 

In test suite based repair, a repair method generates a patch

or potentially buggy statements according to a given test suite

 [23,33,52] . The research community of test suite based repair has

eveloped fruitful results, such as GenProg by Le Goues et al. [23] ,

ar by Kim et al. [21] , and SemFix by Nguyen et al. [33] . In this ar-

icle, we automatically refactor the test suite to improve the ability

f constructing a patch. 

We start this section with a real-world bug in open source

roject, Apache Commons Math, to illustrate the motivation of our

ork. Apache Commons Math is a Java library of mathematics and

tatistics components. 2 

Fig. 1 shows a code snippet of this project. It consists of

 bug in an if and two related test cases. 3 The program in

ig. 1 a is designed to calculate the factorial, including two meth-

ds: factorialDouble for the factorial of a real number and

actorialLog for calculating the natural logarithm of the fac-

orial. The bug, at Line 11, is that the if condition n < = 0 should

ctually be n < 0 . 
Fig. 1 b displays two test cases that execute the buggy if con-

ition: a passing one and a failing one. The failing test case detects

hat a bug exists in the program while the passing test case vali-

ates the existing correct behavior. To generate a patch, a repair

ethod needs to analyze the executed branches of an if by each

est case. Note that an if statement with only a then branch,

uch as Lines 11 to 14 in Fig. 1 a, can be viewed as an if with

 then branch and an empty else branch. 

As shown in Fig. 1 b, we can observe that test code before Line

4 in test case testFactorial executes the then branch while

est code after Line 15 executes the else branch. The fact that

 single test case executes several branches is a problem for cer-

ain automatic repair algorithms such as Nopol [52] described in

ection 2.2 . 
2 Apache Commons Math, http://commons.apache.org/math/ . 
3 See https://fisheye6.atlassian.com/changelog/commons?cs=141473 . 

http://commons.apache.org/math/
https://fisheye6.atlassian.com/changelog/commons?cs=141473


J. Xuan et al. / Information and Software Technology 76 (2016) 65–80 67 

1 public double factorialDouble(final int n) {
2 if (n < 0) {
3 throw new IllegalArgumentException(
4 "must have n >= 0 for n!");
5 }
6 return Math.floor(Math.exp( factorialLog (n)) + 0.5);
7 }
8
9 public double factorialLog(final int n) {
10 // PATCH: if (n < 0) {
11 if (n <= 0) {
12 throw new IllegalArgumentException(
13 "must have n > 0 for n!");
14 }
15 double logSum = 0;
16 for (int i = 2; i <= n; i++) {
17 logSum += Math.log((double) i);
18 }
19 return logSum;
20 }

(a) Buggy program

1 public void testFactorial() { //Passing test case
2 ...
3 try {
4 double x = MathUtils.factorialDouble(-1);
5 fail("expecting IllegalArgumentException");
6 } catch (IllegalArgumentException ex) {
7 ;
8 }
9 try {

10 double x = MathUtils.factorialLog(-1);
11 fail("expecting IllegalArgumentException");
12 } catch (IllegalArgumentException ex) {
13 ;
14 }
15 assertTrue("expecting infinite factorial value",
16 Double.isInfinite(MathUtils.factorialDouble(171)));
17 }
18 public void testFactorialFail() { //Failing test case
19 ...
20 assertEquals("0", 0.0d, MathUtils.factorialLog(0), 1E-14);
21 }

(b) Two original test cases

1 // The first fragment must execute the setUp code
2 @TestFragment(origin=testFactorial, order=1)
3 void testFactorial_fragment_1 () {
4 setUp();
5 //Lines from 2 to 14 in Fig. 1b executing then branch
6 }
7
8 // Split between Line 14 and Line 15 in Fig. 1b
9

10 // The last fragment must execute the tearDown code
11 @TestFragment(origin=testFactorial, order=2)
12 void testFactorial_fragment_2 () {
13 //Lines from 15 to 16 in Fig. 1b executing else branch
14 tearDown();
15 }
16
17 // Already pure test case
18 @Test
19 public void testFactorialFail() {
20 // Executes the then branch
21 }

(c) Three test cases after refactoring

Fig. 1. Example of refactoring a test suite. The buggy program and test cases are extracted from Apache Commons Math. The buggy if is at Line 11 of Fig. 1 a. A test case 

testFactorial in Fig. 1 b executes both then (at Line 10 of Fig. 1 b) and else (at Line 15 of Fig. 1 b) branches of the if (at Line 11 of Fig. 1 a). Fig. 1 c shows the test 

cases after the splitting (between Lines 14 and 15) according to the execution on branches. 
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.2. Automatic software repair with Nopol 

In test suite based repair, a test suite drives the patch gen-

ration. We consider an existing test-suite based repair approach

alled Nopol [52] . Nopol focuses on fixing bugs in if conditions.

o generate a patch for an if condition, Nopol requires test cases

ave to cover either the then branch or the else branch, exclusively . 

However in practice, there are cases where one test case covers

oth then and else branches together. This fact results in an am-

iguous behavior with respect the repair algorithm of Nopol. In the

est case, the repair approach discards this test case and continues

he repair process with the remaining test cases; in the worst case,

he repair approach cannot fix the bug because discarding the test

ase leads to a lack of test cases. 

Let us consider again, the example of Fig. 1 b. Is there any way

o split this test case into two parts according to the execution

f branches? Fig. 1 c shows two test cases after splitting the test

ase testFactorial between Lines 14 and 15. 4 Based on the

est cases after splitting, Nopol works well and is able to generate

 correct patch as expected. This necessary test case splitting mo-

ivates our work: we aim refining a test case to cover simpler parts

f the control flow during program execution. 

In this article, we propose to refactor the test suite to fix bugs

hat are unfixed because of the structure of the test suite. Consider

he example in Fig. 1 . We apply our test code refactoring technique

o obtain simple test cases, as shown in Fig. 1 b. The test suite after

efactoring in Fig. 1 c can make Nopol generate a correct patch that

xes the bug. 

. B-Refactoring: a test code refactoring technique 

In this section, we present the basic concepts of B-Refactoring,

nd important technical aspects. 

.1. Basic concepts 

efinition 1 (program element, test constituent) . In this article, a

rogram element denotes an entity in the code of a program, in
4 Note that in Fig. 1 c, the first two test cases after splitting have extra annotations 

ike @TestFragment at Line 2 as well as extra code like setUp at Line 4 and 

earDown at Line 14. We add these lines to facilitate the test execution, which 

ill be introduced in Section 3.3 . 

n  

u  

s

pposition to a test constituent , which denotes an entity in the code

f a test case. 

We use the terms element and constituent for sake of being al-

ays clear whether we refer to the application program or its test

uite. Any node in an Abstract Syntax Tree (AST) of the program

resp. the test suite) can be considered as a program element (resp.

 test constituent). For example, an if element and a try element

enote an if statement and a try statement in Java programs,

espectively. 5 We consider a test case t as a sequence of test con-

tituents, i.e., t = 〈 c 1 , c 2 , . . . , c n 〉 . 
efinition 2 (execution domain) . Let E be a set of program ele-

ents in the same type of AST nodes. The execution domain D of

 program element e ∈ E is a set of code that characterizes one

xecution of e . 

For instance, for an if element, the execution domain can be

efined as 

 if = { then − branch , else − branch } 
here then-branch and else-branch are the execution of the

hen branch and the else branch, respectively. 

The execution domain is a generic concept. Besides if , let

s give three examples of other execution domains as follows:

he execution domain of a method invocation func ( var a , var b , ...)

s { x 1 , x 2 , . . . , x n } where x i is a vector of actual arguments in a

ethod invocation (potentially infinite); the execution domain of

witch - case is { case 1 , case 2 , . . . , case n } where case i is a case in
he switch . 

For try elements, we define the execution as follows 

 try = { no − exception , exception − caught , 

exception − not − caught } 
here no-exception , exception-caught , and

xception-not-caught are the execution results of try
lement: no exception is thrown, one exception is caught by the

atch block, and one exception is thrown in the catch block but

ot caught, respectively. The execution domain of try will be

sed in dynamic verification of exception handling in Section 5.2.2 .
5 We follow existing work on Java program analysis [17] and call if and try 
tatements. 
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Values in an execution domain D are mutually exclusive: a sin-

gle execution of a program element is uniquely classified in D . Dur-

ing the execution of a test case, a program element e ∈ E may be

executed multiple times. 

Definition 3 (execution signature) . We refer to an execution result

of a program element as an execution signature . 

A pure execution signature denotes the execution of a program

element, which yields a single value in an execution domain D ,

e.g., only the then branch of if is executed by one given test

case t . An impure execution signature denotes the execution of a

program element with multiple values in D , e.g., both then and

else branches are executed by t . Given an execution domain, let

D 0 = { impure } be the set of impure execution signatures. 

The execution signature with respect to an element e by a test

case t is the aggregation of each value as follows. Let T be the test

suite, the set of all test cases, we define 

f : E × T → D ∪ D 

0 ∪ {⊥} 
where ⊥ (usually called “bottom”) denotes that the test case t does

not execute the program element e . For example, f ( e, t ) ∈ D 0 indi-

cates both then and else branches of an if element e are ex-

ecuted by a test case t . If a test case executes the same element

always in the same way (e.g., the test case always executes then
in an if element), we call it pure . Note that for the simplest case,

a set of program elements may consist of only one program ele-

ment. 

Let C denote the set of test constituent c i (1 ≤ i ≤ n ). Then the

above function f ( e, t ) can be refined for the execution of a test con-

stituent c ∈ C . A function g gives the purity of a program element

according to a test constituent: 

g : E × C → D ∪ D 

0 ∪ {⊥} 
A test constituent c is pure on E if and only if ( ∀ e ∈ E ) g ( e, c ) ∈

D ∪ { ⊥ }; c is impure on E if and only if ( ∃ e ∈ E ) g ( e, c ) ∈ D 

0 . 

For example, consider a statement in a test case as a test con-

stituent; then a method call (also a statement) that executes both

then and else branches, is an impure constituent for if ele-

ments. If we consider a top-level statement in a test case as a

test constituent, then a while loop that executes both then and

else , is an impure constituent for if elements. 

Definition 4 [test impurity] . Given a set E of program elements

and a test case t ∈ T , let us define the impurity indicator function

δ : E × T , where E is a set of all the candidate sets of program el-

ements. In details, δ(E, t) = 0 if and only if the test case t is pure

(on the set E of program elements) while δ(E, t) = 1 if and only if

t is impure . Formally, 

δ(E, t) = 

{
0 pure, iff (∀ e ∈ E) f (e, t) ∈ D ∪ {⊥} 
1 impure, iff (∃ e ∈ E) f (e, t) ∈ D 

0 

At the test constituent level, the above definition of purity and

impurity of a test case can be stated as follows. A test case t is

pure if the following holds 

(∃ x ∈ D ) (∀ e ∈ E) (∀ c ∈ C) g(e, c) ∈ { x } ∪ {⊥} 
A test case t is impure if t contains either at least one impure

constituent or at least two different execution signatures on con-

stituents. That is, either of the following holds 

(∃ e ∈ E)(∃ c ∈ C) g(e, c) ∈ D 

0 , or 

∃ e ∈ E, ∃ c 1 , c 2 ∈ C ( g(e, c 1 ) � = g(e, c 2 ) ) ∧ ( g(e, c 1 ) , g(e, c 2 ) ∈ D ) 

An absolutely impure test case according to a set E of program

elements is a test case, for which there exists at least one impure

test constituent: ( ∃ e ∈ E ) ( ∃ c ∈ C ) g ( e, c ) ∈ D 

0 . 
efinition 5 (pure coverage) . A program element e is purely cov-

red according to a test suite T if all test cases yield pure execution

ignatures: ( ∀ t ∈ T ) f ( e, t ) �∈ D 

0 . A program element e is impurely

overed according to T if any test case yields an impure execution

ignature: ( ∃ t ∈ T ) f ( e, t ) ∈ D 

0 . This concept will be used to indicate

he purity of test cases in Section 4.2 . 

Note that the above definitions are independent of the number

f assertions per test case. Even if there is a single assertion, the

ode before the assertion may explore the full execution domain

f certain program elements. 

.2. B-Refactoring 

Test code refactoring aims to rearrange test cases according to

 certain task [7,29,49] . In this article, we present B-Refactoring, a

ype of test code refactoring that aims to minimize the number of

mpure test cases in a test suite. Our definition of purity involves

 set of program elements, hence there are multiple kinds of fea-

ible refactoring, depending on the considered program elements.

or instance, developers can purify a test suite with respect to a

et of if s or with respect to a set of try s, etc. 

Based on Definition 4 , the task of test code refactoring for a set

 of program elements is to find a test suite T that minimizes the

mount of impurity as follows: 

in 

∑ 

t∈ T 
δ(E, t) (1)

The minimum of �t ∈ T δ( E, t ) is 0 when all test cases in T are

ure. As shown later, this is usually not possible in practice. Note

hat, in this article, we do not aim to find the absolutely optimal

urified test suite, but a test suite that improves dynamic analysis

echniques. An impure test case can be split into a set of smaller

est cases that are possibly pure. 

efinition 6 (test fragment) . A test fragment is a continuous se-

uence of test constituents. Given a set of program elements and a

est case, i.e., a continuous sequence of test constituents, a pure test

ragment is a test fragment that includes only pure constituents. 

Ideally, an impure test case without any impure test constituent

an be split into a sequence of pure test fragments, e.g., a test case

onsisting of two test constituents, which covers then and else
ranches, respectively. Given a set E of program elements and an

mpure test case t = 〈 c 1 , . . . , c n 〉 where ( ∀ e ∈ E ) g ( e, c i ) ∈ D ∪ { ⊥ } (1

i ≤ n ), we can split the test case into a set of m test fragments.

et ϕ j be the j th test fragment (1 ≤ j ≤ m ) in t . Let c k 
j 

denote

he k th test constituent in ϕ j and | ϕ j | denote the number of test

onstituents in ϕ j . We define ϕ j as a continuous sequence of test

onstituents as follows, 

 j = 〈 c 1 j , c 2 j , . . . , c | ϕ j | j 
〉 

here (∃ x ∈ D ) (∀ e ∈ E) c k 
j 
∈ { x } ∪ {⊥} and 1 ≤ k ≤ | ϕ j |. 

Based on the above definitions, given a test case without im-

ure test constituents, the goal of B-Refactoring is to generate a

inimized number of pure test fragments. 

.2.1. Example of B-Refactoring 

In the best case, an impure test case can be refactored into

 set of test fragments as above. Table 1 presents an example

f B-Refactoring for a test case with seven test constituents t =
 c 1 , c 2 , c 3 , c 4 , c 5 , c 5 , c 6 , c 7 〉 that are executed on a set of if ele-

ents consisting of only one if element. Three test fragments are

ormed as 〈 c 1 , c 2 , c 3 〉 , 〈 c 4 , c 5 , c 6 〉 , and 〈 c 7 〉 . 
Note that the goal of B-Refactoring is not to replace the origi-

al test suite, but to temporarily refactor the test suite to enhance

ynamic analysis techniques. B-Refactoring is done on-demand,



J. Xuan et al. / Information and Software Technology 76 (2016) 65–80 69 

Table 1 

Example of three test fragments and the execution signature of an if element. 

Test constituent c 1 c 2 c 3 c 4 c 5 c 6 c 7 

Execution signature ⊥ then- branch ⊥ else- branch ⊥ else- branch then- branch 
Test fragment 〈 c 1 , c 2 , c 3 〉 〈 c 4 , c 5 , c 6 〉 〈 c 7 〉 

Testconstituents
withexecution
signatures

Executing
test cases

Filteringout
pure test cases

Splitting test cases

Filteringout test
cases with impure
test constituents

Setof program
elements, e.g., i fProgram

Original test
cases

(a) Unchanged
pure test cases

B-Refactoring

(b) Impure test cases
without impure test

constituents

(c) Impure test cases
with impure test
constituents

Test cases basedon
pure test fragments

Test cases basedon
impure test fragments

Splitting test cases

Legend

Input Processing

Output Data

Fig. 2. Conceptual framework of B-Refactoring. This framework takes a program 

with test cases and a specific set of program elements (e.g., if elements) as in- 

put; the output is new test cases based on test fragments. The sum of test cases in 

(a), (b), and (c) equals to the number of original test cases. 
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a  
ust before executing a specific dynamic analysis. Consequently,

t has no impact on future maintenance of test cases. In partic-

lar, new test cases potentially created by B-Refactoring are not

equired to be read or modified by developers. The difference be-

ween our work and test code refactoring in general is discussed

n Section 6.1 . 

.2.2. Framework 

Our method B-Refactoring refactors a test suite according to a

riterion defined with a set of specific program elements (e.g., if
lements) in order to purify its execution (according to the exe-

ution signatures in Section 3.1 ). In a nutshell, B-Refactoring takes

he original test suite and the requested set of program elements

s input and generates purified test cases as output. 

Fig. 2 illustrates the overall structure of our approach. We first

nstrument all test cases to monitor the test execution on the re-

uested set E of program elements. During the test execution, we

ecord test cases that execute E and collect the execution signa-

ures of test constituents in the recorded test cases. Second, we fil-

er out pure test cases that already exist in the test suite. Third, we

ivide the remaining test cases into two categories: test cases with

r without impure test constituents. For each category, we split the

est cases into a set of test fragments. As a result, a new test suite

s created, whose execution according to a set of program elements

s purer than the execution of the original test suite. Note that it is
ot mandatory to divide test cases into categories with or without

mpure constituents; we make such division in Fig. 2 to show that

ests with impure constituents lead to both pure and impure frag-

ents while tests without impure constituents only lead to pure

ragments. Implementation details are stated in Section 3.3 . 

In this article, we consider a test constituent as a top-level

tatement in a test case. Examples of test constituents could be an

ssignment, a complete loop, a try block, a method invocation,

tc. B-Refactoring does not try to split the statements that are in-

ide a loop or a try branch in a test case. 

.2.3. Core algorithm 

Algorithm 1 describes how B-Refactoring splits a test case into

Algorithm 1: Splitting a test case into a set of test fragments 

according to a given set of program elements. 

Input : 

E, a set of program elements; 

t = 〈 c 1 , . . . , c n 〉 , a test case with n test constituents; 

D , an execution domain of the program elements in E. 

Output : 

�, a set of test fragments. 

1 Let C be an empty set of last constituents in fragments; 

2 Let v = ⊥ be a default execution signature; 

3 foreach program element e ∈ E do 

4 v = ⊥ ; 

5 foreach test constituent c i in t ( 1 ≤ i ≤ n ) do 

6 if g(e, c i ) ∈ D 

0 then // Impure constituent 

7 v = ⊥ ; 

8 C = C ∪ c i − 1 ; // End of the previous fragment 

9 C = C ∪ c i ; // Impure fragment of one constituent 

10 else if g(e, c i ) ∈ D then // Pure constituent 

11 if v = ⊥ then 

12 v = g(e, c i ) ; 

13 else if v � = g(e, c i ) then // v ∈ D 

14 C = C ∪ c i −1 ; 

15 v = g(e, c i ) ; 

16 end 

17 end 

18 end 

19 end 

20 C = C ∪ c n ; // Last constituent of the last fragment 

21 Let c + = c 1 ; 

22 foreach test constituent c j in C do 

23 ϕ = 〈 c + , ..., c j 〉 ; // Creation of a test fragment 

24 � = � ∪ ϕ; 

25 c + = c j+1 ; 

26 end 

 sequence of test fragments. As mentioned in Section 3.2.2 , the

nput is a test case and a set of program elements to be purified;

he output is a set of test fragments after splitting the original test

ase. 

Algorithm 1 returns a minimized set of pure test fragments and

 set of impure test fragments. In the algorithm, each impure test
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6 B-Refactoring, http://github.com/Spirals- Team/banana- refactoring . 
constituent is kept and directly transformed as an atomically im-

pure test case that consists of only one constituent. The remain-

ing continuous test constituents are clustered into several pure test

fragments. Algorithm 1 consists of two major steps. First, we tra-

verse all the test constituents to collect the last test constituent of

each test fragment. Second, based on such collection, we split the

test case into pure or impure test fragments. These test fragments

can be directly treated as test cases for a dynamic analysis appli-

cation. 

Taking the test case in Table 1 as an example, we briefly de-

scribe the process of Algorithm 1 . The traversal at Line 3 consists

of only one program element according to Table 1 . If only one of

the then and else branches is executed, we record this branch

for the following traversal of the test case (at Line 12). If a test

constituent with a new execution signature appears, its previous

test constituent is collected as the last constituent of a test frag-

ment and the next test fragment is initialized (at Line 14). That is,

c 3 and c 6 in Table 1 are collected as the last constituents. The end

constituent of the test case is collected as the last constituent of

the last test fragment (at Line 20), i.e., c 7 . Lines from 7 to 9 are

not run because there is no impure test constituent in Table 1 . Af-

ter the traversal of all the test constituents, Lines from 23 to 25

are executed to obtain the final three test fragments based on the

collection of c 3 , c 6 , and c 7 . 

3.2.4. Validation of the refactored test suite 

Our algorithm for refactoring a test suite is meant to not hurt

the ability of finding bugs. The test suite after refactoring should

be as effective as the original test suite. Existing work on gen-

eral refactoring uses precondition checking to validate the program

behavior before and after refactoring [34,41] . In our work, we ap-

ply several techniques of precondition checking to avoid potential

changes of program behaviors or compilation errors. Two major

methods of precondition checking in our work are as follows. 

First, we check the name conflicts of newly created variables. In

our work, newly created variables are automatically renamed in a

unique way. Based on the code analysis library, Spoon [35] , we are

aware of the list of existing method and variable names before test

code refactoring and the conflicts are handled. Since our technique

refactors test cases for dynamic analysis, no readability is required

for the new names of methods or variables. 

Second, we check expected test behaviors in test cases. In JU-

nit, a test case with expected behaviors will pass if the test ex-

ecution outputs an exception, which is the same as the expected

one (annotated with @Test(expected = Exception.class) ).
Splitting a test case with the above annotation may change the

original test result. In our implementation, we keep such test cases

unchanged. 

However, it is challenging to prove that the above precondition

checking are enough to guarantee the behavioral preservation in a

semantically rich and complex programming language as Java. In-

stead of a proof, we use mutation testing to raise the confidence

that our refactoring approach does not hurt the effectiveness of

the original test suite [18] . The idea of applying mutation testing is

that all mutants killed by the original test suite must also be killed

by the refactored one. Since in practice, it is impossible to enumer-

ate all mutants, this validation is an approximation that compares

the effectiveness of test suites before and after B-Refactoring. We

present the validation results in Section 4.4 . 

3.3. Implementation 

We implement B-Refactoring in Java 1.7, JUnit 4.11, and Spoon.

Spoon is a Java library for source code transformation and analy-

sis [35] , which provides a static analysis platform for extracting the
tructure of test classes. With the support of instrumentation men-

ioned in Section 3.2.2 , the purity of test constituents is collected;

ased on the source code transformation by Spoon, test cases can

e rewritten without compiling errors. Our tool, B-Refactoring, is

ublicly available. 6 

B-Refactoring handles a number of interesting cases and uses

ts own test driver to take them into account. Four major details

re listed as follows. 

.3.1. Test transformation 

As mentioned in Section 3.2.2 , we treat top-level statements in

 test case as test constituents. If one original test case is split into

ore than one test fragments, these new ones are named with the

ndexes of new fragments (as shown in Fig. 1 c). When test frag-

ents use variables that are local to the original test case before

efactoring, these variables are changed as fields of the test class

o maintain their accessibility. 

.3.2. Execution order 

To ensure the execution order of test fragments,

he B-Refactoring test driver uses a specific annotation

TestFragment(origin, order) to execute test frag-

ents in a correct order. The parameter origin is a string, which

ndicates the original method name before refactoring and order
s a 1-based integer, which indicates the execution order. The exe-

ution order is assigned according to the original test case before

efactoring. Then test methods are automatically tagged with the

nnotation during refactoring. Examples of this annotation are

hown in Fig. 1 c. 

.3.3. Handling setUp and tearDown 
Unit testing can make use of common setup and finaliza-

ion code. JUnit 4 uses Java annotations to facilitate writing this

ode. For each test case, a setUp method (with the annotation

Before in JUnit 4) and a tearDown method (with @After )
re executed before and after the test case, e.g., initializing a local

ariable before the execution of the test case and resetting a vari-

ble after the execution, respectively. In B-Refactoring, to ensure

he same execution of a given test case before and after refactor-

ng, we include setUp and tearDown methods in the first and

he last test fragments. This is illustrated in Fig. 1 c. 

.3.4. Shared variables in a test case 

Some variables in a test case may be shared by multiple

tatements, e.g., one common variable in two assertions. In B-

efactoring, to split a test case into multiple ones, a shared vari-

ble in a test case is renamed and extracted as a class field. Then

ach new test case can access this variable; meanwhile, the be-

avior of the original test case is not changed. Experiments in

ection 4.4 also confirm the unchanged behavior of test cases. 

. Empirical study on B-Refactoring 

In this section, we evaluate our technique for test code refac-

oring. This work addresses a novel problem statement: refactor-

ng a test suite to enhance dynamic analysis. To our knowledge,

here is no similar technique that can be used to compare against.

owever, a number of essential research questions have to be

nswered. 

http://github.com/Spirals-Team/banana-refactoring
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Table 2 

Projects in empirical evaluation. 

Project Description Source LoC #Test cases 

Lang A Java library for manipulating core classes 65 ,628 2254 

Spojo-core A rule-based transformation tool for Java beans 2304 133 

Jbehave-core A framework for behavior-driven development 18 ,168 457 

Shindig-gadgets A container to allow sites to start hosting social apps 59 ,043 2002 

Codec A Java library for encoding and decoding 13 ,948 619 

Total 159 ,091 5465 

4

 

A  

c  

A  

u  

fi  

l  

u  

m  

i

4

 

p  

t  

f  

t  

t  

t  

i  

4

 

t

 

 

 

 

t  

t

 

#  

w  

i

 

t  

t

4

 

m  

t  

(  

3  

w  

t  

s  

a

 

t  

i  

i  

n

 

m  

c  

4  

4  

t

 

S  

p  

(  

m  

p  

r  

a  

s  

(  

o  

m

 

p  

a  

c  

t  

e  

b  

p  

s  

m  

c  

c  
.1. Projects 

We evaluate B-Refactoring on five open-source Java projects:

pache Commons Lang (Lang for short), 7 Spojo-core, 8 Jbehave-

ore, 9 Apache Shindig Gadgets (Shindig-gadgets for short), 10 and

pache Commons Codec (Codec for short). 11 These projects are all

nder the umbrella of respectful code organizations (three out of

ve projects by Apache 12 ). Table 2 lists these five projects. We se-

ect these five projects in experiments because they are widely-

sed open-source projects. The example of project Apache Com-

ons Math presented in Section 2.1 is discarded since the time of

ts test execution is extremely long. 

.2. Empirical observation on test case purity 

RQ1: What is the purity of test cases in our dataset? 

We empirically study the purity of test cases for two types of

rogram elements: if elements and try elements. The goal of

his empirical study is to measure the existing purity of test cases

or if and try before refactoring. The analysis for if facilitates

he study on software repair in Section 5.1, while the analysis for

ry facilitates the study on dynamic verification of exception con-

racts in Section 5.2.2 . We show that applying B-Refactoring can

mprove the purity for individual program elements in Section 4.3 .

.2.1. Protocol 

We focus on the following metrics to present the purity level of

est cases: 

• # Pure is the number of pure test cases on all program elements

under consideration; 
• # Non-absolutely impure is the number of impure test cases

without impure test constituent; 
• # Absolutely impure is the number of test cases that consist of at

least one impure test constituent. 

The numbers of test cases in these three metrics are mapped to

he three categories (a), (b), and (c) of test cases in Fig 2 , respec-

ively. 

For test constituents, we use the following two metrics, i.e.,

Total constituents and #Impure constituents . For program elements,

e use the metric #Purely covered program elements ( Definition 5 )

n Section 3.1 . 
7 Apache Commons Lang 3.2, http://commons.apache.org/lang/ . 
8 Spojo-core 1.0.6, http://github.com/sWoRm/Spojo . 
9 Jbehave-core, http://jbehave.org/ . 

10 Apache Shindig Gadgets, http://shindig.apache.org/ . 
11 Apache Commons Codec 1.9, http://commons.apache.org/codec/ . 
12 Apache Software Foundation, http://apache.org/ . 

d

We leverage the implementation of B-Refactoring to calculate

hose evaluation metrics and to give an overview of the purity of

est suites for the five projects. 

.2.2. Results 

We analyze the purity of test cases in our dataset with the

etrics proposed in Section 4.2.1 . Table 3 shows the purity of

est cases for if elements. In the project Lang, 539 out of 2,254

23.91%) test cases are pure for all the executed if elements while

71 (16.46%) and 1,344 (59.63%) test cases are impure without and

ith impure test constituents. In total, 1658 out of 5465 (30.83%)

est cases are pure for the all the executed if elements. These re-

ults show that there is space for improving the purity of test cases

nd achieving a higher percentage of pure test cases. 

As shown in the column Test constituent in Table 3 , 33.81% of

est constituents are impure. After applying B-Refactoring, all those

mpure constituents will be isolated in own test fragments. That

s the number of absolutely impure constituents is equal to the

umber of impure test cases after refactoring. 

In Table 3 , we also present the execution purity of if ele-

ents. In the project Lang, 2263 out of 2397 if elements are exe-

uted by the whole test suite. Among these executed if elements,

51 (19.93%) are purely covered. In total, among the five projects,

4.07% of if elements are purely covered. Hence, it is necessary

o improve the purely covered if elements with B-Refactoring. 

For try elements, we use the execution domain defined in

ection 3.1 and compute the same metrics. Table 4 shows the

urity of test cases for try elements. In Lang, 295 out of 2254

13.09%) test cases are always pure for all the executed try ele-

ents. In total, the percentage of always pure test cases and the

ercentage of absolutely impure test cases are 36.85% and 3.20%,

espectively. In contrast to if elements in Table 3 , the number of

bsolutely impure test cases in Spojo-core is zero. The major rea-

on is that there is a much larger number of test cases in Lang

2254), compared to Spojo-core (133). In the five projects, based

n the purity of test cases according to the number of try ele-

ents, 81.12% try elements are purely covered. 

Comparing the purity of test cases between if and try , the

ercentage of pure test cases for if elements and try elements

re similar, 30.83% and 36.85%, respectively. In addition, the per-

entage of purely covered try elements is 81.12%, which is higher

han that of purely covered if , i.e., 44.07%. That is, 81.12% of try
lements are executed by test cases with pure execution signatures

ut only 44.07% of if elements are executed by test cases with

ure execution signatures. This comparison indicates that for the

ame project, different execution domains of input program ele-

ents result in different results for the purity of test cases. We

an further improve the purity of test cases according to the exe-

ution domain (implying a criterion for refactoring) for a specific

ynamic analysis technique. 

Answer to RQ1: Only 31% (resp. 37%) of test cases are pure 

with respect to if elements (resp. try elements). 

http://commons.apache.org/lang/
http://github.com/sWoRm/Spojo
http://jbehave.org/
http://shindig.apache.org/
http://commons.apache.org/codec/
http://apache.org/


72 J. Xuan et al. / Information and Software Technology 76 (2016) 65–80 

Table 3 

Purity of test cases for if elements according to the number of test cases, test constituents, and if elements. 

Project Test case Test constituent if element 

#Total Pure Non-absolutely impure Absolutely impure Total Impure #Total #Executed Purely covered if 

# % # % # % # % # % 

Lang 2254 539 23 .91% 371 16 .46% 1344 59 .63% 19 ,682 5705 28 .99% 2397 2263 451 19 .93% 

Spojo-core 133 38 28 .57% 5 3 .76% 90 67 .67% 999 168 16 .82% 87 79 45 56 .96% 

Jbehave-core 457 195 42 .67% 35 7 .76% 227 49 .67% 3631 366 10 .08% 428 381 230 60 .37% 

Shindig-gadgets 2002 731 36 .51% 133 6 .64% 1,138 56 .84% 14 ,063 6 ,610 47 .00% 2378 1 ,885 1378 73 .10% 

Codec 619 182 29 .40% 123 19 .87% 314 50 .73% 3 ,458 1294 37 .42% 507 502 148 29 .48% 

Total 5465 1685 30 .83% 667 12 .20% 3,113 56 .96% 41 ,833 14 ,143 33 .81% 5797 5 ,110 2252 44 .07% 

Table 4 

Purity of test cases for try elements according to the number of test cases, test constituents, and try elements. 

Project Test case Test constituent try element 

#Total Pure Non-absolutely impure Absolutely impure #Total #Impure #Total #Executed Purely covered try 

# % # % # % # % # % 

Lang 2254 295 13 .09% 1 ,873 83 .1% 86 3 .81% 19 ,682 276 1 .40% 73 70 35 50 .00% 

Spojo-core 133 52 39 .10% 81 60 .9% 0 0 .00% 999 0 0 .00% 6 5 5 100 .00% 

Jbehave-core 457 341 74 .62% 91 19 .91% 25 5 .47% 3631 29 0 .80% 67 57 43 75 .44% 

Shindig-gadgets 2002 1238 61 .84% 702 35 .06% 62 3 .10% 14 ,063 73 0 .52% 296 244 221 90 .57% 

Codec 619 88 14 .22% 529 85 .46% 2 0 .32% 3458 2 0 .06% 18 16 14 87 .50% 

Total 5465 2014 36 .85% 3 ,276 59 .95% 175 3 .20% 41 ,833 380 0 .91% 460 392 318 81 .12% 

Table 5 

Test case purity before and after refactoring with if s as the purity criterion. 

Project #Exec if Purely covered if 

#Before #After Improvement 

# % 

Lang 2263 451 1701 1 ,250 277 .16% 

Spojo-core 79 45 54 9 20 .00% 

Jbehave-core 381 230 262 32 13 .91% 

Shindig-gadgets 1885 1378 1521 143 10 .38% 

Codec 502 148 208 60 40 .54% 

Total for if s 5110 2252 3746 1 ,494 66 .34% 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Test case purity before and after refactoring with try s as the purity cri- 

terion. 

Project #Exec try Purely covered try 

#Before #After Improvement 

# % 

Lang 70 35 58 23 65 .71% 

Spojo-core 5 5 5 0 0 .00% 

Jbehave-core 57 43 44 1 2 .33% 

Shindig-gadgets 244 221 229 8 3 .62% 

Codec 16 14 16 2 14 .29% 

Total for try s 392 318 352 34 10 .69% 
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4.3. Empirical measurement of refactoring quality 

RQ2: Are test cases purer on individual program elements af- 

ter applying B-Refactoring? 

We evaluate whether B-Refactoring can improve the execution

purity of test cases. Purified test cases cover smaller parts of the

control flow; consequently, they can provide better support to dy-

namic analysis tasks. 

4.3.1. Protocol 

To empirically assess the quality of our refactoring technique

with respect to purity, we employ the following metric (see

Definition 5 ): # Purely covered program elements is the number of

program elements, each of which is covered by all test cases with

pure execution signatures. 

For dynamic analysis, we generally aim to obtain a higher num-

ber of purely covered program elements after B-Refactoring. For

each metric, we list the number of program elements before and

after applying B-Refactoring as well as the improvement: absolute

and relative ( # A f ter−# Be f ore 
# Be f ore 

). 

4.3.2. Results 

Table 5 shows the improvement of test case purity for if el-

ements before and after applying B-Refactoring. For the project
ang, 2263 if elements are executed by the whole test suite. After

pplying B-Refactoring to the test suite, 1250 (from 451 to 1701)

f elements are changed to be purely covered. The relative im-

rovement reaches 277.16% (1250/451). After B-Refactoring, 1364

5110–3746) if elements are not purely covered. The reason is that

ur approach cannot split all impure test cases into pure test cases

ue the technical details (in Section 3.2.2 ). 

For all five projects, 1494 purely covered if elements are ob-

ained by applying B-Refactoring. These results indicate that the

urity of test cases for if elements is highly improved via B-

efactoring. Note that the improvement on Lang is higher than

hat on the other four projects. A possible reason is that Lang

s complex in implementation due to its powerful functionality.

hen its test suite contains many impure test cases; the origi-

al ratio of purely covered if is only 19.93% (i.e., 451/2263 in

able 3 ). Note that the original design of the test suite is only

oftware maintenance, thus, a low ratio of purely covered if el-

ments does not hurt the performance of testing. Meanwhile, after

pplying B-Refactoring, 1250 if elements are liberated as purely

overed ones. We consider the reason behind the high improve-

ent in Lang (comparing with the other four projects in Table 5 ) is

hat many original if elements are executed by impure test cases

ut not absolutely impure test cases. Hence, our work can help to

ighly improve the ratio of purely covered if elements. 
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Table 7 

Mutant comparison before and after applying B-Refactoring. 

Project Mutants before B-Refactoring Mutants after B-Refactoring 

#Killed #Alive #Killed #Alive 

Lang 82 18 82 18 

Spojo-core 100 0 100 0 

JBehave-core 62 33 62 33 

Shinding-gadgets 100 0 100 0 

Codec 90 10 90 10 
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Similarly, Table 6 shows the improvement for try elements be-

ore and after applying B-Refactoring. In Lang, 23 (from 35 to 58)

ry elements are changed to be purely covered after applying B-

efactoring. For all five projects, 34 (from 318 to 352) try ele-

ents change to be purely covered after B-Refactoring. Note that

or Spojo-core, no value is changed before and after B-Refactoring

ue to the small number of test cases. 

Answer to RQ2: After B-Refactoring, if and try elements are 

more purely executed. The purely covered if and try are 

improved by 66% and 11%, respectively. 

.4. Mutation-based validation for refactored test suites 

RQ3: Does B-Refactoring maintain the fault revealing power of 

the test suite? 

In this section, we employ mutation testing to validate that a

efactored test suite does not hurt the effectiveness of the original

est suite [11,13] . 

.4.1. Protocol 

For each project, we generate mutants that represent bugs in

he program code. A mutant is killed by a test suite if at least one

est case fails on this mutation. To evaluate whether a refactored

est suite finds the same number of bugs as the original one, the

wo test suites should satisfy either of the two following rules: one

utant is killed by both the original test suite and the refactor

ne; or one mutant is not killed by both test suites. For the sake

f performance, we randomly select 100 mutants per project. We

se standard mutations on boolean conditions (changes on binary

perators), which are automatically generated with the support of

he program analysis tool, Spoon. For each mutant, we individu-

lly run the original test suite and the purified test suite to check

hether the mutant is killed. In addition, we check that the code

overage is the same. This protocol enables us to increase the con-

dence that the refactored test suites do not hurt the fault detec-

ion power of the original ones. 

.4.2. Results 

Experimental results in Table 7 shows that both the two rules

n Section 4.4.1 are satisfied for all the mutants. In details, all mu-

ants that are killed by the original test suite are also killed by

he refactored ones. The other mutants are alive in both original

nd refactored test suites, respectively. To sum up, mutation-based

alidation for refactored test suites shows that the refactored test

uites after applying our technique have not hurt the effectiveness

f finding bugs of the original ones. 
Answer to RQ3: The test suites automatically refactored by B- 

Refactoring catch the same mutants as the original ones. 

. Applications to dynamic analysis 

We apply B-Refactoring to improve two dynamic analysis tech-

iques, automatic repair and exception contract analysis. 

.1. B-Refactoring for automatic repair of three bugs 

RQ4: Does B-Refactoring improve the fixability by the auto- 

matic repair technique, Nopol [52] ? 

In this section, for automatic repair, we take Nopol [52] , an ap-

roach to automatically fixing conditional bugs, as an example. To

x one bug, Nopol collects runtime trace of a test suite and syn-

hesizes source code for conditional bugs to pass all test cases.

o assess the value of one condition, Nopol is required to distin-

uish runtime conditional values of different branches, i.e., then
nd else branches. By applying B-Refactoring to the original test

uite, more test cases that only cover one branch are temporar-

ly provided for executing Nopol. Then Nopol can fix bugs, which

re not able to be fixed with original test suites. We illustrate

-Refactoring in automatic repair with three case studies. Among

hese case studies, the last case study shows that even by applying

-Refactoring, a bug could be incorrectly fixed. The major reason

s the presence of weak specification in test cases, which can be

vercome via manually adding a test case. 

.1.1. Protocol 

We present case studies on three real-world bugs in Apache

ommons Lang. 13 All the three bugs are located in if conditions. 

We choose the three bugs in case studies based on the follow-

ng steps. First, we use our tool of Abstract Syntax Tree (AST) anal-

sis, GumTree [12] , to automatically extract commits, which mod-

fy existing if conditions. Only commits that modify no more than

 files and no more than 10 AST changes are selected. Second, we

lter out complex commits, which affect more statements than if
onditions. Third, for each commit, we collect its test suite that is

ubmitted at the same time of the commit. Fourth, we manually

alidate whether the bug can be reproduced. Then six bugs in to-

al are collected after these four steps. 
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Table 8 

Evaluation of the effect of B-Refactoring on automatic repair for if -condition bugs. Traces of test cases after applying B-Refactoring enable a repair approach to find 

patches. 

Case study ID LoC Manually-written patch by developers Applying B-Refactoring #Test cases Repair result 

Before After 

– 137231 10 .4K text == null || repl == null || 
with == null || repl.length() 
== 0 

Yes 1 2 Incorrect patch 

1 137371 11 .0K lastIdx < = 0 Yes 1 3 Correct patch 

2 137552 12 .9K len < 0 || pos > str.length() Yes 1 3 Correct patch 

– 230921 15 .8K substr == null || startIndex > = 

size 
Yes 3 6 Correct patch 

3 825420 17 .4K className == null || 
className.length() == 0 

Yes 5 6 Incorrect patch 

- 1075673 18 .9K cs == null || cs.length() == 0 Yes 1 2 No patch 

Total 12 22 

1 String chopNewline(String str) {
2 int lastIdx = str.length() -1;
3
4 // PATCH: if (lastIdx <= 0) {
5 if (lastIdx == 0)
6 return "";
7 char last = str.charAt(lastIdx);
8 if (last == '\n')
9 if (str.charAt(lastIdx -1) == '\r')

10 lastIdx--;
11 else
12 lastIdx++;
13 return str.substring(0, lastIdx);
14 }

(a) Buggy program

1 void testChopNewLine(){
2 ...
3 assertEquals(FOO + "\n" + FOO,
4 StringUtils.chopNewline(FOO
5 + "\n" + FOO));
6
7 // B-Refactoring splits here
8 assertEquals(FOO + "b\n",
9 StringUtils.chopNewline(FOO

10 + "b\n\n"));
11
12 // B-Refactoring splits here
13 assertEquals("",
14 StringUtils.chopNewline("\n"));
15 }

(b) Test case

Fig. 3. Code snippets of a buggy program and a test case in Case study 1. The buggy if condition is at Line 5 of Fig. 3 a; the test case in Fig. 3 b executes both the else 
and then branches of the buggy if . Then B-Refactoring splits the test case into three test cases (at Lines 7 and 12 in Fig. 3 b). 
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Table 8 shows these six bugs, including lines of executable code

(LoC), manually-written patches by developers, and the number of

test cases before and after B-Refactoring. The six collected bugs

cannot be directly and correctly fixed by Nopol. Test suites of all

these bugs contain impure test cases according to if elements.

Thus, we apply B-Refactoring to obtain pure test cases. In total,

22 pure test cases are obtained after applying B-Refactoring to the

12 originally executed test cases. Note that only the executed test

cases by the buggy if s (before and after applying B-Refactoring)

are listed, not the whole test suite. 

For bugs with IDs 137371, 137552, and 230921, applying B-

Refactoring leads to the correct repair of these bugs via providing

pure test cases to Nopol. For bugs with IDs 137231 and 825420, the

failure reason is that several test cases are designed in preliminar-

ily weak specifications. Even employing B-Refactoring, these bugs

cannot be correctly fixed. For the bug with ID 1075673, Nopol can-

not synthesize a patch because Nopol searches for a value for a

null object, which is not available during the test execution. This

bug reveals a threat to the design of Nopol, which is important to

repair methods, but not relevant to impure test cases. In this paper,

we choose three bugs as case studies, i.e., bugs with IDs 137371,

137552, and 825420. 

5.1.2. Case study 

We show how B-Refactoring influences the repair of the bug

with ID 137371 as follows. Fig. 3 shows a code snippet with a
13 For more details, visit http://fisheye6.atlassian.com/changelog/commons?cs= 

137371 , http://fisheye6.atlassian.com/changelog/commons?cs=137552 , and http:// 

fisheye6.atlassian.com/changelog/commons?cs=825420 . 

n  

o  

t  

b  
uggy if condition at Line 5 of bug with ID 137371. In Fig. 3 a, the

ethod chopNewLine aims to remove the line break of a string.

he original if condition missed the condition of lastIdx < 0 .
n Fig. 3 b, a test case testChopNewLine targets this method. We

how three test constituents, i.e., three assertions, in this test case

other test constituents are omitted for the sake of space). The first

nd third assertions cover the else branch (viewing as an empty

lse branch) of the if condition at Line 5 of chopNewLine
hile the second assertion covers the then branch. Such a test

ase confuses Nopol; that is, it cannot identify unambiguously the

overed branch of this test case and cannot generate a patch for

his bug. 

B-Refactoring can split the test case into three test cases, as

hown at Lines 7 and 12 in Fig. 3 b. We replace the original test

ase with three new test cases after B-Refactoring. Then the re-

air approach can generate a patch, which behaves the same as

he manual patch at Line 4 in Fig. 3 a. 

Results on the two other bugs (with ID 137552 and ID 825420)

an be found in Section Appendix . B-Refactoring also enables

opol to find the patch for the bug with ID 137552; Nopol can-

ot correctly fix the bug with ID 825420, even with the support

f B-Refactoring. To further exploring the fixability, in addition to

utomatic refactoring, we manually add a test case that specifies a

issing situation, which was an omission in the original design of

he test suite. 

Based on the three case studies, we show that improving the

umber of purely covered if elements can improve the number

f fixed bugs by Nopol; meanwhile, prior results in Table 5 shows

he number of purely covered if elements is improved by 66.34%

y applying B-Refactoring to the original test suites. Hence, a

http://fisheye6.atlassian.com/changelog/commons?cs=137371
http://fisheye6.atlassian.com/changelog/commons?cs=137552
http://fisheye6.atlassian.com/changelog/commons?cs=825420
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14 Note that the sum of the three metrics is constant before and after applying 

B-Refactoring. 
umber of potential bugs with impurely covered if elements

ould be newly fixed with B-Refactoring. 

To sum up, we have shown that our approachB-Refactoring en-

bles Nopol to automatically repair previously unfixed bugs with

opol, by providing a refactored version of the test suite that pro-

uces optimized traces for the technique under consideration. 

Answer to RQ4: B-Refactoring improves the fixability of the 

Nopol program repair technique on real-world bugs, which 

cannot be fixed before applying B-Refactoring. 

.2. B-Refactoring for exception contract analysis 

RQ5: Does B-Refactoring improve the identification of excep- 

tion contracts by the contract verification technique, SCTA [8] ? 

In this section, we employ an existing dynamic analysis tech-

ique of exception contracts, called SCTA by Cornu et al. [8] .

CTA aims to verify an exception handling contract, called source-

ndependence, which states that catch blocks should work in all

ases when they catch an exception. Assertions in a test suite are

sed to verify correctness. The process of SCTA is as follows. To an-

lyze exception contracts, exceptions are injected at the beginning

f try elements to trigger the catch branches; then, a test suite

s executed to record whether a try or catch branch is covered

y each test case. SCTA requires that test cases execute only the try or

he catch . 
However, if both try and catch branches are executed by the

ame test case, SCTA cannot identify the coverage of the test case.

n this case, the logical predicates behind the algorithm state that

he contracts cannot be verified because the execution traces of

est cases are not pure enough with respect to try elements. Ac-

ording to the terminology presented in this article, we call such

est cases covering both branches impure . If all the test cases that

xecute a try element are impure, no test cases can be used

or identifying the source-independence. To increase the number

f identified try elements and decrease the number of unknown

nes, we leverage B-Refactoring to refactor the original test cases

nto purer test cases. 

.2.1. Protocol 

We apply B-Refactoring on the five projects in Section 4.1 . We

im to identify the source-dependency of more exception contracts

 try elements); that is, the number of unknown try elements on

ource-dependency should be reduced. Then the goal of this exper-

ment is to evaluate how many try elements are recovered from un-

nown ones . We apply B-Refactoring to the test suite before analyz-

ng the exception contracts. That is, we first refactor the test suite

nd then apply SCTA on the test suites before and after refactoring.

imilar to the original work [8] , we assess the number of unknown

ource-dependency of try s to evaluate B-Refactoring in exception

ontract analysis. 

In exception contract analysis, a try is source-independent if

he catch block proceeds equivalently, whatever the source of the
aught exception is in the try block [8] . We analyze exception con-

racts with the following metrics: 14 

• # Source-independent is the number of verified source-

independent try elements; 
• # Source-dependent is the number of verified source-dependent

try elements; 
• # Unknown is the number of unknown try elements, because

at least one test case is impure. 

The last metric is the key one in this experiment. The goal is

o decrease this metric by refactoring, i.e., to obtain less try-catch

locks, whose execution traces are too impure to apply the verifi-

ation algorithm. 

.2.2. Results 

We investigate the results of the exception contract analysis be-

ore and after B-Refactoring. 

Table 9 presents the number of source-independent try ele-

ents, the number of source-dependent try elements, and the

umber of unknown ones. Taking the project Lang as an example,

he number of unknown try elements decreases by 15 (from 22

o 7). This enables the analysis to prove the source-independence

or 14 more try (from 23 to 37) and to prove source-dependence

or one more (from 5 to 6). That is, by applying B-Refactoring to

he test suite in project Lang, we can detect whether these 68.18%

15/23) try elements are source-independent or not. 

For all the five projects, 21.05% (20 out of 95) of try ele-

ents are rescued from unknown ones. This result shows that B-

efactoring can refactor test suites to cover simple branches of try
lements. Such refactoring helps the dynamic analysis to identify

he source independence. 

Answer to RQ5: Applying B-Refactoring to test suites improves 

the ability of verifying the exception contracts of SCTA. 21% of 

unknown exception contracts are reduced. 

. Discussions 

In this section, we present our discussion on differences be-

ween B-Refactoring and classical refactoring, differences between

-Refactoring and our previous work on test case purification, per-

ormance of B-Refactoring, and threats to the validity in our work. 

.1. Differences with classical refactoring 

As mentioned in Section 3.1 , B-Refactoring aims to enhance dy-

amic analysis techniques. This leads to several differences be-

ween our work and existing refactoring techniques, including pro-

ram refactoring and test code refactoring [29] as follows. 

First, the goal is different. B-Refactoring benefits dynamic anal-

sis techniques while classical refactoring benefits developers. We

esign B-Refactoring to improve dynamic analysis (e.g., automatic

epair); that is, the users of B-Refactoring are programs and not

umans. In contrast, most existing refactoring techniques aim to

elp human developers [22] and the users of classical refactoring

re developers. 

Second, a test suite after applying B-Refactoring temporarily re-

laces the original test suite only to conduct the task of dynamic

nalysis. On the contrary, the code resulting from classical refac-

oring is meant to replace the original code. 
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Table 9 

B-Refactoring for exception contract checking 

Project Before After Improvement on #unknown 

#Source- 

independent 

#Source- 

dependent 

#Unknown #Source- 

independent 

#Source- 

dependent 

#Unknown # % 

Lang 23 5 22 37 6 7 15 68 .18% 

Spojo-core 1 0 0 1 0 0 0 n/a 

Jbehave-core 7 2 33 8 2 32 1 3 .03% 

Shindig-gadgets 30 12 38 31 13 36 2 5 .26% 

Codec 8 0 2 10 0 0 2 100 .00% 

Total 69 19 95 87 21 75 20 21 .05% 
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Third, a refactored test suite by B-Refactoring does not have

any readability requirements because no developer will ever read

this refactored test suite. Renaming, a common concern of classi-

cal refactoring, such as the difficulty of finding “good” names [42] ,

is not applicable to B-Refactoring. For instance, a variable can be

renamed as a_b_c without the concern of test readability. 

6.2. Differences with our previous work 

In our previous work, test case purification [54] , we split fail-

ing test cases to assist fault localization. Four major differences be-

tween B-Refactoring in this article and our previous work [54] are

detailed as follows. 

First, test case purification is designed to improve the perfor-

mance of a single technique, fault localization, while B-Refactoring

is more general in the sense that it can improve multiple tasks. 

Second, in test case purification, only failing test cases are refac-

tored: skipped assertions in failing test cases are extracted as new

test cases. In B-Refactoring, both passing and failing test cases are

refactored according to traces during test execution. 

Third, the core criterion for splitting test cases is different. B-

Refactoring splits test cases based on the execution monitored in

application code, which is executed by test cases, e.g., then and

else branches based on the execution of if elements. In test case

purification, the failing test cases are split based on assertions in

test code (and not in application code); that is, the refactoring cri-

terion focuses on test code and not application code. 

Fourth, test case purification uses dynamic slicing, while in B-

Refactoring, no slicing technique is used because we do not need

to remove any statement. 

6.3. Performance of B-Refactoring 

We discuss the time cost of performing B-Refactoring as fol-

lows. In general, applying B-Refactoring comprises four phases. As

shown in Section 3.2 , first, given a specific task of dynamic anal-

ysis, a project as well as its test suite under refactoring is instru-

mented so as to collect the runtime trace between each test con-

stituent and each program element. Second, the test suite is run to

collect the trace based on the instrumentation. Third, according to

the collected trace, the original test suite is transformed into a new

test suite with smaller test cases. Fourth, the new test suite after

refactoring is run as a test suite in the task of dynamic analysis

(e.g., automatic repair in Section 5.1 ). 

The first and the third phases last for a few seconds, always less

than one minute for our dataset on a standard laptop. The time

cost of the second and the fourth phases depend on the project

under study. For a mid-sized project, such as Lang in our dataset, a

typical execution of a test suite lasts within minutes. The time cost

of the second phase is nearly the same as the test execution; the

time cost of the fourth phase is nearly the same as the time cost

of executing the test suite in a specific task of dynamic analysis. 
This is preliminary evidence that B-Refactoring is fast. The time

ost is a negligible part in the dynamic analysis that is performed.

ote that for a given task, B-Refactoring is used offline, without

trong requirements on the execution time. 

.4. Threats to validity 

We present threats to the validity of our B-Refactoring results

n three categories. 

Construct validity . In this article, we use three case studies

n real-world bugs to demonstrate the benefit of applying B-

efactoring to test suites. Improvement based on these case studies

ndicates that our proposed technique can help to better use test

uites for automatic repair. Collecting more real bugs for evaluat-

ng B-Refactoring is possible, but time-consuming [52] . We leave

he evaluation on more real bugs as future work. In addition, re-

ults of test case purity in five studied projects are diverse. In

ections 4.2 and 4.3 , we show detailed analysis of these results.

owever, a further exploration on test suites should be conducted

o find out what these results are caused by. Due to the lack of his-

orical test data, we have not investigated the reason of the diverse

esults, which is left as future work. In Section 4.4 , we apply the

dea of mutation testing to evaluate the refactored test suite. We

alidate that the test suite after refactoring does not lose the abil-

ty of testing via randomly selected program mutants. However, we

ote that our validation of test suites is incomplete. That is, not all

rogram behaviors are checked by mutants and the mutation space

s not completely explored (for the sake of time). 

Internal validity . Test code can be complex. For example, a test

ase can have loops and internal mocking classes. In our imple-

entation, we consider test constituents as top-level statements,

hus complex test constituents are simplified as atomic ones. Han-

ling more complex constituents can reduce the number of im-

ure test cases, e.g., reducing the number of absolutely impure test

ases in Table 3 . But the complex structure of test code will in-

rease the effort of implementing our technique. Hence, by skip-

ing the process of internal statements inside test code, our work

ould be viewed as a trade-off between refactoring all test con-

tituents and the implementation effort. 

External validity . We have shown that B-Refactoring improves

he efficiency of program repair and contract verification. How-

ver, the two considered approaches stem from our own research.

his is natural, since our expertise in dynamic analysis makes us

ware of the nature of these problems. For further assessing the

eneric nature of our refactoring approach, experiments involving

ther dynamic analysis techniques are required. Moreover, besides

opol [52] and SCTA [8] , there exist other methods in both auto-

atic repair and exception contract analysis. We have not applied

-Refactoring to these methods since most of these tools are not

pen available and are not implemented in Java as B-Refactoring.

oreover, experiments in our work mainly focus on if and try
rogram elements. Both of these program elements can be viewed

s a kind of branch statements. Our proposed work can also be
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pplied to other elements, like method invocations (in Section 3.1 ).

o show more evidence of the improvement on dynamic analysis,

xperiments could be conducted for different program elements. 

. Related work 

We list the related work to our article in three categories: the

pproach to test code refactoring and two application scenarios. 

.1. Test code refactoring 

Test code refactoring [49] is a general concept of making test

ode better understandable, readable, or maintainable. Based on

1 test code smells, Deursen et al. [49] first propose the concept

f test code refactoring as well as six refactoring rules, including

educing test case dependence and adding exploration for asser-

ions. Extension on this work by Van Deursen & Moonen [48] and

ipka [36] propose how to refactor test code for the test first rule

n extreme programming. Guerra & Fernandes [16] define a set of

epresentation rules for different categories of test code refactor-

ng. Moreover, Xu et al. [51] propose directed test suite augmenta-

ion methods to detect affected code by code changes and to gen-

rate test cases for covering these code. Recent work by Xuan et al.

55] proposes test case mutation to reproduce crashes with stack

race. Test case mutation generates multiple variants for a given

est case to trigger potential bugs. 

Technical issues in refactoring have been studied. Schäfer et al.

42] focus on conducting better renaming systems in Java Inte-

rated Development Environment (IDE) while their follow-up work

43] addresses another technique, how to extract methods dur- 

ng refactoring. Overbey et al. [34] propose a method of differen-

ial precondition checking, which identifies the behavior preserva-

ion in refactoring. To evaluate refactoring techniques, Soares et al.

46] automatically generate programs as well as test suites to de-

ect bugs of refactoring engines; Gligoric et al. [15] propose an

nd-to-end approach to testing refactoring engines with real-world

rojects and evaluate their reliability. In this article, we have not

mployed the above testing techniques to validate our refactoring

pproach; instead, we leverage the technique of program mutation

o evaluate our approach. In our work, program mutants are gen-

rated and executed with test suites before and after refactoring;

xperiments show that program mutants that killed by test suites

re the same with and without refactoring. 

Refactoring techniques in source code [29] have been intro-

uced to test code. Existing known patterns in refactoring are ap-

lied to test cases to achieve better-designed test code. Chu et al.

7] propose a pattern-based approach to refactoring test code to

eep the correctness of test code and to remove the bad code

mells. Alves et al. [2] employ pattern-based refactoring on test

ode to make better regression testing via test case selection and

rioritization. In contrast to modifying one test via the above

attern-based refactoring on test code, our work in this article

ims to split one test case into a set of small and pure test cases.

he new test cases can assist a specific software task, e.g., splitting

est cases to execute single branches in if elements for software

epair and to trigger a specific status of try elements for excep-

ion handling. 

Two concepts in test generation relates to our work, i.e., test

ase adaptation and test case optimization. Test case adaptation , in-

roduced by Mirzaaghaei et al. [31] aims to repair test cases to suit

or the code change. On the other hand, test case optimization , in-

roduced by Baudry et al. [4] , [5] , generates new test cases to im-

rove the ability of fault localization. Hence, both test case adapta-

ion and test case optimization generate new test cases. However,

n our work, we aim to improve the usage of test cases for dynamic

nalysis techniques. 
.2. Automatic software repair 

Automatic software repair aims to generate patches to fix soft-

are bugs. Software repair employs a given set of test cases to

ank potential faulty statements [1,53] and validate the correct-

ess of generated patches. Weimer et al. [23] propose GenProg,

 genetic-programming based approach to fixing C bugs. This ap-

roach views a fraction of source code as an AST and updates

STs by inserting and replacing known AST nodes. Nguyen et al.

33] propose SemFix, a semantic-analysis based approach, also for

 bugs. This approach combines symbolic execution, constraint

olving, and program synthesis to narrow down the search space

f repair expressions. 

Martinez & Monperrus [26] mine historical repair actions based

n fine-granulated ASTs with a probabilistic model. Kim et al.

21] propose Par, a pattern-based repair approach via frequent

ays of fixing bugs. The repair patterns in their work are used

o avoid nonsensical patches due to the randomness of some mu-

ation operators. Qi et al. [37] investigate the strength of ran-

om search in GenProg and show that the random search (with-

ut genetic programming) based repair method, RSRepair, can

chieve even better performance than GenProg. Kaleeswaran et al.

20] propose MintHint, a repair hint method for identifying expres-

ions that are likely to occur in patches, instead of fully automated

enerating patches. Mechtaev et al. [28] address the simplicity of

enerated patches with a maximum satisfiability solver. Long & Ri-

ard [24] propose a staged program repair method for synthesizing

onditional bugs. 

Barr et al. [3] investigate the “plastic surgery” hypothesis in

enetic programming based repair like GenProg and show that

atches can be constructed via reusing existing code. Martinez

t al. [27] target the redundancy assumptions for existing code.

ao et al. [47] explore how to leverage machine-generated patches

o assist human debugging. Monperrus [32] discusses the problem

tatement and the evaluation criteria of software repair. Zhong &

u [57] examine 9,0 0 0 real-world patches and summarize 15 find-

ngs for fault localization and faulty code fix in automatic repair. A

ecent study by Qi et al. [38] shows that only 2 out of 55 gener-

ted patches by GenProg and 2 out of generated patches by RSRe-

air are correct; all the others fail to be expected behaviors due to

xperimental issues and weak test cases. Martinez et al. [25] em-

irically evaluate the results of GenProg [23] , Kali [38] , and Nopol

52] on 224 real bugs from the Defects4J dataset. This study indi-

ates the difficulty of repairing real bugs and the status of primar-

ly weak specifications in test cases. 

In existing work [9,52] , we propose Nopol, a specific repair tool

argeting buggy if conditions. In this article, we leverage Nopol

s a tool in one application scenario of automatic software repair,

hich investigates real-world bugs on if . 

.3. Automatic analysis of exception handling 

Exception handling aims to analyze and to enhance the process-

ng of software exceptions. Sinha & Harrold [44] propose represen-

ation techniques with explicit exception occurrences (explicitly via

hrow statements) and exception handling constructs. Their fol-

owing work by Sinha et al. [45] develops a static and dynamic

pproach to analyzing implicit control flows caused by exception

andling. 

Robillard & Murphy [39] present the concept of exception-

ow information and design a tool that supports the extrac-

ion and view of exception flows. Fu & Ryder [14] develop a

tatic exception-chain analysis for the entire exception propaga-

ion in programs. Zhang & Elbaum [56] study the faults associ-

ted with exceptions that handle noisy resources and propose an

pproach to amplifying the space of exceptional behavior with
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external resources. Moreover, Bond et al. [6] present an efficient

origin tracking technique for null and undefined value errors in the

Java virtual machine and a memory-checking tool. Mercadal et al.

[30] propose an approach that relies on an architecture description

language, which is extended with error-handling declarations. 

In existing work [8] , we propose an approach to detect the

types of exception handling on nine Java projects. In this arti-

cle, the approach [8] serves as a platform to examine whether

B-Refactoring can improve the ability of detecting exception con-

tracts. 

8. Conclusions 

This article addresses the problem of impure traces of test cases

We propose B-Refactoring, a technique to split test cases into small

fragments in order to increase the efficiency of dynamic program

analysis. Our experiments on five open-source projects show that

our approach effectively improves the purity of test cases. We

show that applying B-Refactoring enhances the performance of ex-

isting analysis tasks, namely repairing if -condition bugs and ana-

lyzing exception contracts. 

In future work, we plan to apply B-Refactoring to other kinds

of program analysis, such as test case prioritization. Moreover, we

will explore the reason of designing impure test cases by analyzing

and understanding existing tests in open-source projects. A human

study on testers who design impure test cases could be helpful to

further understand the hidden knowledge of test design. We also

plan to extend our implementation of B-Refactoring to deal with

more complex statements (e.g., loops) in test cases. An advanced

tool that handles fine-grained test statements can effectively re-

duce the impurity of test suites. 
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Appendix A. Case studies on repairing real-world bugs 

We evaluate B-Refactoring on three real-world bugs in Apache

Commons Lang. Detailed description on these bugs can be found

in Table 8 . The first case study is in Section 5.1 and the other two
case studies are as follows. e  

1 String mid(String str, int pos, int len) {
2 if (str == null )
3 return null ;
4
5 // PATCH:
6 // if (len < 0 || pos > str.length())
7 if (pos > str.length())
8 return "";
9
10 if (pos < 0)
11 pos = 0;
12 if (str.length() <= (pos + len))
13 return str.substring(pos);
14 else
15 return str.substring(pos, pos + len);
16 }

(a) Buggy program

Fig. 4. Code snippets of a buggy program and a test case in Case study 2. The buggy if
the then , and the else branches of the buggy statement, respectively. Then B-Refactorin
1. Case study 2 

The code snippet in Fig. 4 presents an if -condition bug with

D 137552 in Apache Commons Lang. In Fig. 4 a, the method mid is
o extract a fixed-length substring from a given position. The orig-

nal if condition at Line 7 did not deal with the condition of len
 0 , which is expected to return an empty string. In Fig. 4 b, a

est case testMid_String targets this method. Three assertions

re shown to explain the coverage of branches. Two assertions at

ines 3 and 11 cover the else branch of the if condition while

he other assertion at Line 7 covers the then branch. A repair ap-

roach, like Nopol, cannot generate a patch for this bug because

he test case testMid_String covers both branches of the if
ondition at Line 7 in the method mid . 

We apply B-Refactoring to split the test case into three test

ases, as shown at Lines 6 and 10 in Fig. 4 b. Such splitting

an separate the coverage of then and else branches; that is,

ach new test case only covers either a then or else branch.

hen the repair approach can generate a patch, len < = -1 &&
tr.length() < pos , which behaves the same to the manual

atch at Line 6 in Fig. 4 a. 

2. Case study 3 

This bug is with ID 825420 in Apache Commons Lang.

ig. 5 shows a code snippet with a buggy if condition at

ine 12. In Fig. 5 b, two methods getPackageName(Class)
nd getPackageName(String) work on extracting the pack-

ge name of a class or a string. The original if condi-

ion missed checking the empty string, i.e., the condition of

lassName.length() == 0 . In Fig. 5 b, we show two test

ases that examine the behavior of these two methods. For the

rst test case test_getPackageName_Class , we present two

ssertions. We do not refactor this test case because this test case

s pure (the first assertion executes the else branch while the

econd assertion does not execute any branch). For the second

est case test_getPackageName_String , two assertions are

hown. The first one is passing while the second is failing. Thus,

e split this test case into two test cases to distinguish passing

nd failing test cases. Such splitting is specifically designed to sup-

ort the repair by Nopol. 

Based on B-Refactoring, we obtain two test cases, as shown at

ine 16 in Fig. 5 b. Then the repair approach can generate a patch

s className.length() == 0 . Note that this patch is differ-

nt from the real patch because the condition className ==
1 void testMid_String() {
2 ...
3 assertEquals("b", StringUtils
4 .mid(FOOBAR, 3, 1));
5
6 // B-Refactoring splits here
7 assertEquals("", StringUtils
8 .mid(FOOBAR, 9, 3));
9

10 // B-Refactoring splits here
11 assertEquals(FOO, StringUtils
12 .mid(FOOBAR, -1, 3));
13 }

(b) Test case

 statement is at Line 7 in Fig. 4 a while the test case in Fig. 4 b executes the else , 
g splits the test case into three test cases. 

http://dx.doi.org/10.13039/501100001809
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1 String getPackageName(Class cls) {
2 if (cls == null )
3 return StringUtils.EMPTY;
4 return getPackageName(cls.getName());
5 }
6
7 String getPackageName(String className){
8
9 // PATCH: if (className == null
10 || className.length() == 0)
11
12 if (className == null )
13 return StringUtils.EMPTY;
14 while (className.charAt(0) == '[')
15 className = className.substring(1);
16 if (className.charAt(0) == 'L' &&
17 className.charAt(className
18 .length() -1) == ';')
19 className = className.substring(1);
20 int i = className.lastIndexOf(
21 PACKAGE_SEPARATOR_CHAR);
22 if (i == -1)
23 return StringUtils.EMPTY;
24 return className.substring(0, i);
25 }

(a) Buggy program

1 // Do not need to be split.
2 void test_getPackageName_Class() {
3 assertEquals("java.util", ClassUtils
4 .getPackageName(Map.Entry.class));
5 assertEquals("", ClassUtils
6 .getPackageName((Class)null ));
7 ...
8 }
9

10 void test_getPackageName_String() {
11 ...
12 assertEquals("java.util", ClassUtils
13 .getPackageName(
14 Map.Entry.class.getName()));
15
16 // B-Refactoring splits here
17 assertEquals("", ClassUtils
18 .getPackageName(""));
19 }
20
21 // Manually added test case
22 // to generate a correct condition
23 void test_manually_add() {
24 assertEquals("", ClassUtils
25 .getPackageName((String)null ));
26 }

(b) Test cases

Fig. 5. Code snippets of a buggy program and a test case in Case study 3. The buggy if statement is Line 12 of Fig. 5 a while two test case in Fig. 5 b executes then and 

else branches of the buggy statement. B-Refactoring splits the second test case into two test cases and keeps the first test case. The last test case test_manually_add 
is manually added for explanation. 
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ull is ignored. The reason is that in the original test suite, there

xists no test case that validates the then branch at Line 13. That

s, the patch is incorrect. 

To generate the same patch as the real one at Line 9, we manu-

lly add one test case test_manually_add at Line 23 in Fig. 5 b.

his test case ensures the behavior of the condition className
= null . Based on this manually added test case and the test

ases by B-Refactoring, the repair approach can generate a patch

hat is the same as the real one. 

Summary . In summary, we empirically evaluate our B-

efactoring technique on three real-world if -condition bugs from

pache Commons Lang. All these three bugs cannot be originally

epaired by the repair approach, Nopol. The reason is that one test

ase covers both the then and else branches. Then Nopol can-

ot decide which branch is covered and cannot generate repair

onstraints for this test case. With B-Refactoring, we separate test

ases into pure test cases to cover only a then or else branch.

ased on the test cases after applying B-Refactoring, the first two

ugs are correctly fixed while the third bug is not. For the third

ug, one test case is ignored by developers in the original test

uite. By manually adding a new test case, this bug can also be

xed via the test suite after B-Refactoring. 
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