
Clone Detection on Large Scala Codebases

Wahidur Rahman∗, Yisen Xu†, Fan Pu†, Jifeng Xuan†, Xiangyang Jia†,
Michail Basios‡, Leslie Kanthan‡, Lingbo Li‡, Fan Wu‡ and Baowen Xu§

∗Imperial College London, London, United Kingdom

w.rahman17@imperial.ac.uk
†Wuhan University, Wuhan, China

{xuyisen,fan pu,jxuan,jxy}@whu.edu.cn
‡Turing Intelligence Technology, London, United Kingdom

{mike, leslie, lingbo, fan}@turintech.ai
§Nanjing University, Nanjing, China

bwxu@nju.edu.cn

Abstract—Code clones are identical or similar code segments.
The wide existence of code clones can increase the cost of
maintenance and jeopardise the quality of software. The research
community has developed many techniques to detect code clones,
however, there is little evidence of how these techniques may
perform in industrial use cases. In this paper, we aim to uncover
the differences when such techniques are applied in industrial
use cases. We conducted large scale experimental research on
the performance of two state-of-the-art code clone detection
techniques, SourcererCC and AutoenCODE, on both open source
projects and an industrial project written in the Scala language.
Our results reveal that both algorithms perform differently on the
industrial project, with the largest drop in precision being 30.7%,
and the largest increase in recall being 32.4%. By manually
labelling samples of the industrial project by its developers, we
discovered that there are substantially less Type-3 clones in the
aforementioned project than that in the open source projects.

Index Terms—Clone Detection, Scala Language

I. INTRODUCTION

With more and more software source code constantly being
published on open source platforms such as GitHub, code
reuses or code clones are common to many repositories [1],
[2]. Code clones are segments of source code that are identical
or similar in syntax or semantics [3], [4]. Developers often
create code clones via copying existing code and pasting with
or without modifications to reduce the development time and
costs. However, code clones were shown to increase software
maintenance costs, since software bugs can easily propagate
via code cloning and inconsistent fixing of these bugs may
induce undefined behaviour [5]. While completely avoiding
code clones is impractical, researchers have proposed differ-
ent detection techniques to identify code clones in existing
codebases to reduce the risk of code clones.

Existing clone detection techniques can be generally cate-
gorised according to the code representation used in the algo-
rithm: text-based [6], lexical- or token-based [7], [8], graph-
based [9], abstract syntax tree-based [10], [11], bytecode-
based [12], [13], or their combinations [14], [15]. Among
different clone detection techniques, token-based algorithms
have shown promising results whilst being scalable to large
datasets [16]. One state-of-the-art token-based algorithm is
SOURCERERCC [8], which incorporates several optimisation
techniques that dramatically improve its speed. Meanwhile,

with growing attention to deep learning, White et al. and
Tufano et al. introduced and improved a deep learning tech-
nique, AUTOENCODE for clone detection [17], [18], which
outperforms many previous algorithms.

Despite promising reports, the performance of these state-
of-the-art algorithms have only been applied to open source
codebases, where code reuse and foraging is a common prac-
tice [1]. In contrast, to protect their source code from leaking,
many commercial organisations allow limited or no access to
public open source platforms. This makes code reuse from
external sources difficult or even impossible. In such a closed
programming environment, detected code clones are likely to
be different from those in an open environment where there
are rich sources for code cloning. Therefore, investigation is
required for ascertaining whether the performance of clone
detection algorithms may change when applied to closed
codebases.

In this paper, we empirically investigate the performance
of clone detection on an industrial project with over 4 million
lines of code (LoC) written in Scala, a functional programming
language. We aim to examine two state-of-the-art clone detec-
tion algorithms, namely SOURCERERCC and AUTOENCODE,
on a private industrial project and determine the potential
differences in performance when applying them to open source
projects. Both algorithms are adapted to accept programs
written in Scala as the industrial codebase is written in Scala.
The source code in the industrial codebase was created in an
environment where downloading code from external sources
was strictly forbidden. Such programming environment is not
uncommon in many industrial organisations, therefore, the
private industrial codebase we studied in this paper can be an
example of how clone detection techniques may perform in
industrial use cases in general. To compare the performance
of the algorithms on industrial and open source codebases,
we apply the algorithms to the industrial codebase and the
top 20 Scala projects on Github, ranked according to the
number of stars of the projects. Samples of code clones
are manually labelled by human developers, and precision
and recall metrics are calculated as measurements of the
algorithms’ performance.

Experimental results show that, when applied to the in-
dustrial codebase, both algorithms show different degrees of

978-1-7281-6269-0/20/$31.00 c© 2020 IEEE IWSC 2020, London, ON, Canada38

Authorized licensed use limited to: Wuhan University. Downloaded on December 18,2020 at 13:20:00 UTC from IEEE Xplore. Restrictions apply.

degradation in precision, with the biggest drop from 95.1% to
64.4%, but the recall can improve as much as 32.4%. We also
observed a substantially lower proportion of Type-3 clones
(definitions of different types are introduced in Section II) in
the industrial codebase, and a higher proportion of the samples
are not considered as clones. Upon discussion with industrial
developers, we discovered that many developers may consider
unrefactorable clones as having little or no value to them and
may be reluctant to classify such code segments as clones.

II. BACKGROUND

A. Scala Language
Scala is a general purpose programming language that

makes use of both, object-oriented and functional program-
ming paradigms. It is closely related to the Java programming
language as it compiles to java bytecode and provides inter-
operability with packages written in Java, but also provides
functional programming features such as currying, higher
order functions, type inference and pattern matching. While
evaluation of clone detection techniques on the Java language
exists in great number in the literature, evaluation on Scala or
other functional languages is lacking.

Listing 1: Example of two similar methods in Scala language

def secondElementIfArray(x: Any) = x match {
case Array(, a , *) => a
case => ”default”

}
def nameIfDog(x: Any) = x match {

case Dog(a) => a
case => ”default”

}
An example of a syntactically similar method pair in Scala

language is shown in Listing 1. In the example, the first
method checks whether the input is an array with at least
two elements and returns the second element of the array. The
second method checks whether the input is of the class Dog,
where Dog(name: String) is the constructor of the class.
It returns its member variable Dog.name if it is the matching
class. Though these two methods implement quite different
functionalities, due to the pattern matching feature of Scala,
the two methods appear similar in syntax. Therefore, these
two methods can be identified as clones by clone detection
algorithms. However, clone detection for Scala programs may
be distinct from that for other languages. For instance, if the
two methods in Listing 1 are implemented in Java, one may
use size checking on an array and an array elements’ access,
while the other requires class type checking and the getter
function of a member variable. Therefore, they may appear
different and subsequently make a clone detection algorithm
identify them as non-clones.

B. Types of Code Clones
We follow the widely accepted definitions of different types

of clones [3], [4], [8]:
Type-1. Identical code fragments except for differences in

whitespace, comments and layout.
Type-2. Identical code fragments except for differences in

identifier names and literal values, in addition to Type-1 clone
differences.

Type-3. Syntactically similar code fragments that contain
added, modified and/or removed code statements with respect
to each other, in addition to Type-1 and Type-2 clone differ-
ences.

Type-4. Syntactically different code fragments, but are
semantically similar in terms of their implemented function-
alities.

C. SOURCERERCC and AUTOENCODE

In this paper, we investigate the performance of two state-of-
the-art clone detection techniques; SOURCERERCC is a token-
based algorithm and AUTOENCODE incorporates deep learning
with different code representations [8], [18].

SOURCERERCC is a state-of-the-art token-based clone de-
tection algorithm proposed by Sajnani et al. [8]. It represents
a code fragment as a bag of tokens (tokens that appear
in the fragment and their frequencies). The clone detection
criterion is deterministic and based on the degree of overlap
between the bags of tokens from two code fragments, and
a percentage similarity threshold is used as a cutoff when
deciding whether they are clones. This simple idea requires
pairwise comparisons of all methods to assess the degree of
overlap and is therefore O(n2) complexity and hard to scale
to large real-world projects. SOURCERERCC overcomes this
by exploiting two properties of token features, which define
the upper and lower bounds of similarity if only a subset of
tokens is seen. Through the creation of a memory efficient
partial index for candidates that satisfy these properties, and
repetitively updating the upper and lower bounds of similarity
measure as more tokens are seen, it is then able to eliminate
the majority of method pairs as early as possible with certainty.
With such optimisation, the number of method pairs requiring
a full comparison is greatly reduced, thus the speed of the
algorithm is dramatically increased.

AUTOENCODE is a state-of-the-art clone detection algorithm
based on deep learning, a neural network based technique to
minimise the need for manual feature engineering. It works by
generating sentence embeddings using deep learning on four
different representations of code fragments: Identifier, Abstract
Syntax Tree (AST), compiled bytecode, and Control Flow
Graph (CFG). The first two representations can be obtained
from the source code, and the latter two are usually obtained
from compiled binary code. AUTOENCODE works primarily in
four stages. In the first stage, code representations are extracted
from both source code and binary code, and word vectors
are generated at the required code granularity level (in our
case, we require a vector for each method). In the second
stage, word embeddings for each word in the word vector
of a method are learnt using a Recurrent Neural Network.
In the third stage a sentence embedding is learnt for each
method with a Recursive Auto Encoder [19], using the word
embeddings from the second stage. In the final stage, euclidean
distances between sentence embeddings are computed and
a distance threshold is used to determine which methods
are clones. The algorithm detects clones using each code
representation independently, and the results can be combined
in different ways to form the final result.

39

Authorized licensed use limited to: Wuhan University. Downloaded on December 18,2020 at 13:20:00 UTC from IEEE Xplore. Restrictions apply.

III. EXPERIMENT DESIGN

In this section, we describe in details the datasets, the
experiment procedure, and the Research Questions (RQs).

A. Datasets

In order to evaluate and compare the performance of clone
detection algorithms on open source and industrial codebases,
we use two separate datasets in our experiments: an open
source dataset and a private industrial dataset.

The open source dataset is composed of the top 20 most
popular Scala projects (that received the most stars) on
GitHub. Since more popular projects tend to have more
developers contributing to the project, the collaborative coding
practice should be the closest to that of an industrial project. A
summary of the 20 Scala projects, including their lines of code
and number of methods, is outlined in Table I. The numbers
of lines of code are counted after comments and empty
lines are removed, and only the methods with a minimum
of 10 lines are considered, which is a common practice for
clone detection [3], [8]. The project sizes vary from 2, 091 to
305, 276 lines of code, and the numbers of methods vary from
30 to 5, 256.

The industrial project is obtained via a collaboration with
an industry organisation, which wishes to remain anonymous.
The project consists of more than 4 million of lines of code,
and is written and maintained by hundreds of developers
within the company. Due to the specific domain of the
company, developers are given limited access to open source
platforms. For instance, open platforms such as SourceForge
and BitBucket are completely blocked within the company.
GitHub can be viewed, but downloading open source projects
without approval is strictly forbidden. Similar requirements
can be found in many other private companies to protect
the proprietary source code [20], [21]. Code written in such
an environment is to our interests as it is difficult or even
impossible to copy open source contents and the code cloning
behaviours can be different. This may lead to a different
pattern of code clones in the codebase, and therefore different
performance of clone detection algorithms. To gain access to
this private codebase, some of the authors worked within the
company for a period of time to conduct the experiments.

B. Experiment Procedure

Our experiments consist of three steps: data filtering, data
labelling, and clone detection for both open source projects
and the industrial project. We describe the details of each step
as follows.

1) Data Filtering: Instead of relying on other clone de-
tection tools as oracle [22], we choose to manually label the
data as our ground truth. The benefit of manual labelling is
not just better accuracy, but also, for the industrial dataset,
the developer labelled data can better represent the industrial
viewpoint on what Type-3 and Type-4 clones are. As the num-
ber of method pairs grows quadratically with the number of
methods, it is impractical to label all method pairs. Therefore,
we use SOURCERERCC to filter method pairs such that we can
focus on the pairs that are more likely to be clones. A 70%
similarity threshold was given to the SOURCERERCC algorithm
in the data filtering stage. Such threshold was chosen according

TABLE I: Projects summary.

Project Method Count Lines of Code

scala-2.13.x 5,256 305,276

playframework 894 69,653

gitbucket 371 22,754

finagle 1,663 130,195

kafka-manager 238 13,310

lila 1,161 77,669

bfg-repo-cleaner 30 2,091

fpinscala 67 7,378

gatling 432 33,375

scalaz-series-7.3.x 435 44,237

incubator-openwhisk 591 52,938

sbt 865 44,350

scala-js 3,373 133,952

scala-native 1,610 103,170

dotty 4,310 284,081

scalding 745 48,440

BigDL 2,376 163,881

breeze 1,244 48,271

shapeless 604 30,491

spray 380 33,167

Open Source Total 26,645 1,648,679

Industrial Project 69,533 4,051,596

to our observation that method pairs below this threshold are
very rarely to be clones, therefore can be regarded as non-
clones without affecting our results.

2) Data Labelling: For different datasets, similar ap-
proaches are used for data labelling. For the industrial dataset,
we asked the developers who have contributed to the codebase
to voluntarily label the data. We sent out the invitation of
labelling to a group of 705 developers, and 67 developers
responded to the invitation by labelling at least one of the
method pairs. To make the labelling process simple and
convenient, we created a web-based GUI within the company’s
system to show a randomly picked method pair to the partic-
ipant, along with the definition of the four different types of
clones and their corresponding examples. The participant is
asked to label the method pair as which type of clone, or not
a clone, based on his/her best knowledge. Owing to the timing
and the voluntary nature of the data labelling, we obtained 201
labelled method pairs that at least two developers agreed on
the label.

For the open source dataset, two of the authors labelled the
data separately, when there was disagreement, another author
would make a decision between the two different labels. All
of the three authors who labelled the open source dataset
had been working intensively on the adaptation of the clone
detection algorithms to Scala language, therefore, all three
authors understood Scala programs and labelled the data with
confidence.

3) Clone Detection: To evaluate the performance of
SOURCERERCC and AUTOENCODE, we run both algorithms
on the industrial codebase and open source codebases. In this
paper, we only use two code representation for AUTOENCODE:
Identifier (leaf) and AST (path), as opposed to using all four

40

Authorized licensed use limited to: Wuhan University. Downloaded on December 18,2020 at 13:20:00 UTC from IEEE Xplore. Restrictions apply.

representations in the original publication [8]. This is because
the other two representations require the binary code after
compilation, which is forbidden for the industrial codebase;
meanwhile, our preliminary experiments showed that the other
two representations did not work well for Scala language. The
results of both industrial and open source datasets are then
validated by the labelled data. We calculated precision and
recall metrics to compare the performance of the algorithms.

C. Experimental Setup
For SOURCERERCC on both industrial and open source

datasets, a 90% similarity threshold is used to identify code
clones. For AUTOENCODE, we keep the default parameters
recommended by the original authors.

The machine specifications for running the clone detection
algorithms differ between the open source and industrial
projects due to the company regulations regarding the use
and location of the source code. Experiments on the industrial
codebase were run on a virtual machine with six cores of Intel
Xeon CPU and 64GB of memory; Experiments on the open
source projects were run on Google Cloud instances with eight
cores of virtual CPU and 30GB of memory.

Implementation. We re-implemented variants of algorithms
SOURCERERCC and AUTOENCODE to support Scala language.
For SOURCERERCC, we re-implemented the algorithm fully
in Scala with the native scala.meta library for parsing Scala
code. For AUTOENCODE, we also use scala.meta library to
parse Scala code and extract tokens for the Identifier and AST
representations. For the rest of the algorithm, we use the im-
plementation from the original authors. Our implementation of
SOURCERERCC and AUTOENCODE can be found on GitHub12.

D. Research Questions
In this paper, we aim to answer the following RQs. We

explained the rationals behind each question as follows.

RQ1 What is the performance of SOURCERERCC and AUTOEN-

CODE on open source codebases after adapted for Scala
Language?

This RQ is to understand the baseline of the performance
of clone detection algorithms under investigation. Specifically,
we are interested in whether an algorithm performs as good
on Scala language as they do with other languages studied by
previous researchers. We answer this question by measuring
precision and recall metrics of both algorithms on 20 open
source Scala projects. The execution time of the algorithms
on each project is recorded to evaluate the scalability of the
algorithms.

RQ2 Is there any difference in the performance of the clone
detection algorithms when they are applied on open
source codebase and private industrial codebase?

We pose this RQ to understand whether the state-of-the-
art clone detection algorithms perform differently on private
industrial codebase. Using the data labelled by human de-
velopers, we calculate the precision and recall metrics of
both algorithms, and compare them with their respective
performances on open source datasets.

1https://GitHub.com/Wahidur-Rahman/scala sourcererCC
2https://GitHub.com/Wahidur-Rahman/scala autoencode

IV. RESULTS

A. RQ1. Results on Open Source Benchmarks

The first research question queries the performance of
SOURCERERCC and AUTOENCODE on open source Scala
projects. We assess the results of both algorithms on the 20
open source benchmarks listed in Table I.

To evaluate the performance of the algorithms, we manually
labelled 1000 random samples of method pairs after the data
filtering process. Using the labelled data and the result from
both clone detection algorithms, we can draw the Confusion
matrix to understand its performance (Table II). From the
table, we can calculate precision and recall measurements
of the algorithms. For instance, the precision and recall of
SOURCERERCC are calculated as:

precision =
TP

TP + FP
=

247

247 + 1
= 99.6%

recall =
TP

TP + FN
=

247

247 + 616
= 28.6%

where TP , FP , FN are the counts of True Positive, False
Positive, and False Negative respectively.

Precision and recall values are calculated for each algorithm,
and are summarised in Table III. According to the table, we
can see that both algorithms show a high level of precision,
with SOURCERERCC topping the table with 99.6% of precision.
The precision of the SOURCERERCC algorithm is in keeping
with that seen by Sajnani et al. [8], where they calculated a pre-
cision of 91% on a sample of clones from BigCloneBench [23].
For the AUTOENCODE algorithm, the precision values are as
well similar to that reported by Tufano et al. [18]. According to
their results, AUTOENCODE achieved 100% and 96% precision
for Identifier and AST representations respectively, whereas it
is 98.3% and 95.1% respectively in our findings. The recall
values cannot be compared with previous studies directly since
we used different means to obtain the ”ground truth” of False
Negatives.

we plot the execution time for all open source projects
against their lines of code and number of methods in Fig-
ure 1 and Figure 2 respectively. The execution time for each
algorithm uses a different scale on the y axis in the Figures.

0 50000 100000 150000 200000 250000 300000

Lines of Code

0

500

1000

1500

2000

T
im
e
(s
)
-
S
ou
rc
er
er
C
C

0

50000

100000

150000

200000

250000

300000

350000

T
im
e
(s
)
-
A
u
to
E
n
co
d
e

SourcererCC

AutoEncode - Identifier

AutoEncode - AST

Fig. 1: Execution time as the Lines of Code increases for the

open source benchmarks

The execution time of SOURCERERCC falls mostly in the
range of 0.087 to 192 seconds, with an outlier of 2183 seconds

41

Authorized licensed use limited to: Wuhan University. Downloaded on December 18,2020 at 13:20:00 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Confusion matrices of SOURCERERCC and AUTOENCODE on the open source projects and the Industrial project.

The combination columns are formed using the union of the Identifier and AST representation clones from the AUTOENCODE

algorithm.

Open Source projects
Truth (From Authors)

Clone Not Clone

SOURCERERCC identification
Clone 247 1

Not Clone 616 136

AUTOENCODE (Identifier) Clone 57 1
Not Clone 806 136

AUTOENCODE (AST) Clone 117 6
Not Clone 746 131

AUTOENCODE (Combination)
Clone 139 7

Not Clone 724 130

Industrial Project
Truth (From Developers)

Clone Not Clone

SOURCERERCC identification
Clone 35 10

Not Clone 28 128

AUTOENCODE (Identifier) Clone 13 2
Not Clone 50 136

AUTOENCODE (AST) Clone 29 16
Not Clone 34 122

AUTOENCODE (Combination) Clone 30 16
Not Clone 33 122

0 1000 2000 3000 4000 5000

Number of Methods

0

500

1000

1500

2000

T
im
e
(s
)
-
S
ou
rc
er
er
C
C

0

50000

100000

150000

200000

250000

300000

350000

T
im
e
(s
)
-
A
u
to
E
n
co
d
e

SourcererCC

AutoEncode - Identifier

AutoEncode - AST

Fig. 2: Execution time as the Number of Methods increases

for the open source benchmarks

TABLE III: Precision and recall metrics for AUTOENCODE

and SOURCERERCC on the open source and industrial projects

Open Source projects Industrial project

Precision Recall Precision Recall

SOURCERERCC 99.6% 28.6% 77.8% 55.6%
AUTOENCODE (Identifier) 98.3% 6.6% 86.7% 20.6%
AUTOENCODE (AST) 95.1% 13.6% 64.4% 46.0%
AUTOENCODE (Combination) 95.2% 16.1% 65.2% 47.6%

observed on project scala-native. On the other hand, the
execution time of AUTOENCODE is generally 3 degrees of
magnitude larger, ranging from 4.5 to 5781 minutes. These
numbers are consistent with the execution time reported by
both algorithms’ original authors, where SOURCERERCC took
a few seconds for projects in the order of 106 lines of code,
and AUTOENCODE could take several hours.

Summary. Both SOURCERERCC and AUTOENCODE achieve
similar precision measurements on open source Scala projects,
indicating that both algorithms retain performance when
applied to functional languages. Though we use our own
implementation of both algorithms, the execution time of
both algorithms is consistent with their original authors. The
timing of algorithm AUTOENCODE can be up to 3 degrees of
magnitude longer than SOURCERERCC.

B. RQ2. Performance Comparisons
In this section, we assess the performance of the two

algorithms on the industrial project, in terms of precision and
recall metrics, and compare with their performance on open
source projects. A summary of precision and recall values

for both the industrial project and open source project can
be found in Table III.

For the SOURCERERCC algorithm, the precision measure-
ments drop on the industrial project, compared with the
performance on Scala open source projects, however, the recall
measurements increase. Precision drops from 99.6% to 77.8%,
a difference of 21.8%, but recall increases from 28.6% to
55.6%, a difference of 27%. For the AUTOENCODE algorithm,
similar results can be observed. Precision measurements drop
for all representations, with the biggest drop observed from
95.1% to 64.4% on AST representation, a difference of 30.7%.
On the other hand, recall measurements increase for all
representations, with the biggest increase from 13.6% to 46%
on AST representation, a difference of 32.4%.

Summary. When both algorithms are applied to the in-
dustrial project, their performance changed substantially, with
decreased precision and increased recall. The precision can
drop as much as 30.7%, while the recall may increase as much
as 32.4%.

C. Discussion
In order to understand why the performance of the algo-

rithm is different on the industrial project, we summarise the
distribution of different types of clones in Table IV.

It is noticeable that there are differences in the distribution
of the types of clones sampled from the open source project
and the industrial project. Firstly, Type-2 clones constitute
11.8% of the samples from open source projects, while this
number is only 7.5% for the industrial project. This can be
due to the closed programming environment where the indus-
trial project was created and maintained. Due to the limited
access to other code sources, direct copying and pasting code
segments happens less often, which may contribute to the less
prevalence of Type-2 clones.

TABLE IV: Distribution of different types of clones

Open Source projects Type 1 Type 2 Type 3 Type 4 Not a Clone Total

Open Source projects 53 118 641 51 137 1000
Open Source projects (%) 5.3 11.8 64.1 5.1 13.7 100
Industrial project 11 15 28 9 138 201
Industrial project (%) 5.5 7.5 13.9 4.5 68.7 100

However, the differences in clone detection performance are
more likely to be the direct result of much less Type-3 clones
and much more non-clones in the industrial project sample.
According to Table IV, only 13.9% of the industrial samples
are Type-3 clones, while it is 64.1% in open source samples.

42

Authorized licensed use limited to: Wuhan University. Downloaded on December 18,2020 at 13:20:00 UTC from IEEE Xplore. Restrictions apply.

On the other hand, 68.7% of the industrial samples are not
a clone, while this number is only 13.7% in open source
samples. Upon discussion with some developers who labelled
the industrial samples, we discovered that their views of what
should be a clone might be different from the academic stan-
dards. For industrial use cases, developers tend to consider the
goal of such clone detection is to help them refactor or remove
duplicate code. With that in mind, and when the judgement of
a potential Type-3 clone can be subjective, industry developers
tend to judge by whether it can be refactored, thus much less
Type-3 clones. This results directly in more False Positives
and less False Negatives for the clone detection algorithms,
therefore poorer precision and better recall observed in the
industrial project.

Summary. The distributions of different types of clones are
different for the labelled samples from open source projects
and industrial project. Industrial developers tend to take refac-
torability into account for the judgement of potential Type-3
clones. Therefore, clone detection algorithms should take such
factors into account to be more practical in industrial use case.

V. THREATS TO VALIDITY

Internal Validity. The authors of SOURCERERCC used 6
lines/50 tokens as the minimum size of methods to be consid-
ered, whereas we used 10 lines in our experiments. We chose
10 lines because it is a common cutoff used in the majority of
clone detection research, including the AUTOENCODE paper.
Furthermore, smaller methods are likely to include more
uninteresting or trivial clones that are easier to detect [2].
Therefore, if we were to include methods with 6-10 lines, the
performance of SOURCERERCC measured in the context of our
experiments is likely to be slightly better than that reported in
this paper, thus it would still be comparable with the results
from the original authors.

External Validity. The performance of the algorithms were
evaluated on 20 open source Scala projects from Github, it
may not be the same beyond these 20 projects. We mitigate
this threat by selecting the most popular Scala projects on
Github, measured by number of stars. These projects are more
likely to be forked or referenced by Scala program developers,
such that the clone patterns may be carried on to many other
Scala projects. Therefore, the performance measured on these
20 projects should be representative for that on most Scala
projects.

The performance differences seen in the industrial project
studied in this paper may not generalise to other industrial
projects. However, this industrial project was developed in an
environment where access to external code sources was very
limited, which is a common practice in many companies in
order to protect their proprietary source code. Code created in
such an environment is likely to have a similar cloning pattern.
Therefore, the evaluation on the industrial project in this paper
should be representative for other industrial projects, and the
threat is thus mitigated.

VI. RELATED WORK

Code clone detection is widely studied. In this paper, we aim
at studying the code clones in Scala programs and focusing on
the difference from existing empirical results. We list related
work as follows.

Sheneamer et al. [4] surveyed different types of clone
detection techniques up to 2016. They categorised clone de-
tection techniques into: textual approaches, lexical approaches,
syntactical approaches, and semantic approaches, where the
approaches in each category are more complicated than the
category immediately preceding it. The performance of the
algorithms were extracted from other references, whereby dif-
ferent datasets were used, but none was based on a private and
closed codebase. Sajnani et al. [8] proposed SOURCERERCC, a
token-based clone detection algorithm. Despite the principle
of the algorithm being simple, the authors applied several
optimisations to eliminate impossible clone pairs as early as
possible, and used an inverted index to make the algorithm
scalable to very large codebases. White et al. [17] and Tufano
et al. [18] proposed and improved a Deep Learning-based
clone detection algorithm that automatically learned features
from four different representation of the source code at dif-
ferent levels of abstraction. The proposed algorithm identified
potential code clones by calculating the similarities between
code segments using those learned features. Saini et al. [22]
used a pipeline framework to identify code clones, where each
stage of the pipeline used varied metrics of the code segments.
Their results revealed that the framework had better detection
of Type-3 and Type-4 clones, which were generally difficult
to detect for other clone detection algorithms. Despite the
aforementioned researchers having evaluated different clone
detection algorithms on datasets as large as 100 millions of
lines of code, none have yet to evaluate the performance on
private industrial codebase.

Bellon et al. [24] and Roy et al. [25] compared the per-
formance of different clone detection algorithms and tools
up to 2007 and 2009. To make an unbiased comparison, the
algorithms and tools were applied on the same datasets, which
were relatively small (less than one million lines of code). Sva-
jlenko et al. [26] extended the previous comparison framework
for clone detection algorithms and tools, and introduced their
mutation and injection framework. Ragkhitwetsagul et al. [16]
compared clone detection techniques as well as plagiarism
detection and compression tools up to 2018, in a scenario
by scenario basis. When different algorithms and tools were
compared with each other over a common dataset, it posed
some requirements on the dataset, including programming
language and size of the dataset. As a result, all of the
tool comparison works were done over some open source
codebases. Svajlenko et al. [27] introduced BigCloneEval,
a clone detection tool evaluation framework, which makes
it easier for new clone detection algorithms to be evaluated
over a common open source dataset. Regarding functional
languages, Xu et al. [28] investigated how developers used
the unique features of Scala language.

There are also studies regarding code clones on industrial
codebases. Monden et al. [29] looked at the correlation be-
tween code clones and software quality in a quantitative way.
They used a token-based algorithm to identify code clones in
an industrial codebase consisting of more than one million
lines of code, but the performance of the algorithm was not
evaluated, as it was not the focus of the paper. Zhang et
al. [30] investigated the reasons behind code cloning from the
perspective of developers and organisations, by analysing code

43

Authorized licensed use limited to: Wuhan University. Downloaded on December 18,2020 at 13:20:00 UTC from IEEE Xplore. Restrictions apply.

clones and interviewing developers. They also applied a token-
based algorithm to detect code clones in a large industrial
codebase consisting of more than 14 millions lines of code. A
number of sampled code clones were manually inspected, but
the performance of the algorithm was not reported, as it was
not the focus of their paper.

VII. CONCLUSION

In this paper, we revisited the performance of two state-
of-the-art clone detection algorithms, SOURCERERCC and AU-

TOENCODE, in their adaptation to Scala. Our experiments are
conducted on an industrial project and 20 open source projects.
We found that both SOURCERERCC and AUTOENCODE retained
consistent performance on open source Scala projects, when
precision is concerned. However, we observed that the pre-
cision dropped substantially when they are applied on the
industrial project.

Further investigation shows that there are less Type-2 clones
in the industrial project, which could be caused by the limited
access to other code sources, and there are substantially less
Type-3 clones in the industrial project. Our initial discussion
with industrial developers suggests that they consider un-
refactorable clones unfavorable in the clone detection results,
and they tend to classify such code segments as non-clones.
Such observation motivates further investigation on the cloning
practices and adaptation of clone detection algorithms in
industrial use cases.

In the future, we would like to extend this study to inves-
tigate in details what are considered clones from industrial
point of view, and how we could adapt such view to guide
Clone Detection algorithms to be more practical in industrial
cases. Furthermore, we want to demonstrate that Clone Detec-
tion techniques can be used in various software optimisation
studies [31]–[33], as additional restriction or even optimisation
objective during the optimisation process.

ACKNOWLEDGEMENT

The work is supported by the National Key R&D Program
of China under Grant No. 2018YFB1003901, and the Na-
tional Natural Science Foundation of China under Grant No.
61872273.

REFERENCES

[1] M. Gharehyazie, B. Ray, and V. Filkov, “Some from here, some from
there: Cross-project code reuse in github,” in 14th IEEE MSR’17, 2017,
pp. 291–301.

[2] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in 18th
Symposium on Foundations of Software Engineering, 2010, pp. 147–156.

[3] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, pp. 1165 –
1199, 2013.

[4] A. Sheneamer and J. Kalita, “A survey of software clone detection
techniques,” IJCA, vol. 137, no. 10, pp. 1–21, 2016.

[5] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in 2009 IEEE 31st ICSE, 2009, pp. 485–495.

[6] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent
approach for detecting duplicated code,” in ICSM, 1999, pp. 109–118.

[7] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE TSE, vol. 28, no. 7, pp. 654–670, 2002.

[8] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in 38th ICSE,
2016, pp. 1157–1168.

[9] R. Komondoor and S. Horwitz, “Using slicing to identify duplication in
source code,” in Static Analysis Symposium, 2001, pp. 40–56.

[10] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in 2006 13th IEEE WCRE, 2006, pp. 253–262.

[11] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in 29th ICSE, 2007, pp.
96–105.

[12] I. Keivanloo, C. K. Roy, and J. Rilling, “Sebyte: A semantic clone
detection tool for intermediate languages,” in ICPC, 2012, pp. 247–249.

[13] Y. Xue, Z. Xu, M. Chandramohan, and Y. Liu, “Accurate and scalable
cross-architecture cross-os binary code search with emulation,” IEEE
TSE, 2018.

[14] M. Funaro, D. Braga, A. Campi, and C. Ghezzi, “A hybrid approach
(syntactic and textual) to clone detection,” in IWSC, 2010, pp. 79–80.

[15] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in IEEE ICSM,
2010, pp. 1–9.

[16] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code
similarity analysers,” Empirical Software Engineering, pp. 2464–2519,
2018.

[17] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 31st ASE, 2016, pp. 87–98.

[18] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshy-
vanyk, “Deep learning similarities from different representations of
source code,” in 2018 IEEE/ACM 15th MSR, 2018, pp. 542–553.

[19] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning,
“Semi-supervised recursive autoencoders for predicting sentiment dis-
tributions,” in 2011 EMNLP, 2011, pp. 151–161.

[20] A. Bosu, J. C. Carver, C. Bird, J. D. Orbeck, and C. Chockley, “Process
aspects and social dynamics of contemporary code review: Insights from
open source development and industrial practice at microsoft,” IEEE
TSE, pp. 56–75, 2017.

[21] M. Salam and S. U. Khan, “Challenges in the development of green
and sustainable software for software multisourcing vendors: Findings
from a systematic literature review and industrial survey,” JSEP, vol. 30,
no. 8, 2018.

[22] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V. Lopes, “Oreo:
Detection of clones in the twilight zone,” in FSE, 2018, pp. 354–365.

[23] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in 2015 IEEE ICSME, 2015, pp. 131–140.

[24] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and evaluation of clone detection tools,” IEEE TSE, vol. 33, pp.
577–591, 2007.

[25] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, 2009.

[26] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,”
in 2014 IEEE ICSME, 2014, pp. 321–330.

[27] J. Svajlenko and C. K. Roy, “Bigcloneeval: A clone detection tool
evaluation framework with bigclonebench,” in 2016 IEEE ICSME, 2016,
pp. 596–600.

[28] Y. Xu, F. Wu, X. Jia, L. Li, and J. Xuan, “Mining the use of higher-order
functions: An exploratory study on scala programs,” in Proceedings of
the National Software Application Conference of China (NASAC 2019).
to appear, 2019.

[29] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Software
quality analysis by code clones in industrial legacy software,” in 8th
IEEE Symposium on Software Metrics, 2002, pp. 87–94.

[30] G. Zhang, X. Peng, Z. Xing, and W. Zhao, “Cloning practices: Why
developers clone and what can be changed,” in 2012 28th IEEE ICSM,
2012, pp. 285–294.

[31] M. Basios, L. Li, F. Wu, L. Kanthan, and E. T. Barr, “Darwinian data
structure selection,” in ESEC/FSE 2018. New York, USA: ACM, 2018,
p. 118–128.

[32] M. Basios, L. Li, F. Wu, L. Kanthan, and E. Barr, “Optimising darwinian
data structures on google guava,” in Search Based Software Engineering.
Springer International Publishing, 2017, pp. 161–167.

[33] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep parameter
optimisation,” in GECCO 2015. New York, USA: ACM, 2015, p.
1375–1382.

44

Authorized licensed use limited to: Wuhan University. Downloaded on December 18,2020 at 13:20:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

