
The Journal of Systems and Software 148 (2019) 88–104

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Does the fault reside in a stack trace? Assisting crash localization by

predicting crashing fault residence

Yongfeng Gu

a , Jifeng Xuan

a , ∗, Hongyu Zhang

b , Lanxin Zhang

a , Qingna Fan

c , Xiaoyuan Xie

a ,
Tieyun Qian

a

a School of Computer Science, Wuhan University, Wuhan 430072, China
b School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW2308, Australia
c Ruanmou Edu, Wuhan 430079, China

a r t i c l e i n f o

Article history:

Received 27 February 2018

Revised 7 October 2018

Accepted 6 November 2018

Available online 6 November 2018

Keywords:

Crash localization

Stack trace

Predictive model

Crashing fault residence

a b s t r a c t

Given a stack trace reported at the time of software crash, crash localization aims to pinpoint the root

cause of the crash. Crash localization is known as a time-consuming and labor-intensive task. Without

tool support, developers have to spend tedious manual effort examining a large amount of source code

based on their experience. In this paper, we propose an automatic approach, namely CraTer, which pre-

dicts whether a crashing fault resides in stack traces or not (referred to as predicting crashing fault res-

idence). We extract 89 features from stack traces and source code to train a predictive model based on

known crashes. We then use the model to predict the residence of newly-submitted crashes. CraTer can

reduce the search space for crashing faults and help prioritize crash localization efforts. Experimental re-

sults on crashes of seven real-world projects demonstrate that CraTer can achieve an average accuracy of

over 92%.

© 2018 Published by Elsevier Inc.

t

c

m

g

G

b

t

o

c

2

a

a

t

h

f

a

t

l

a

i

1. Introduction

Software faults can hide everywhere in source code and could

cause software crashes. Once a crash happens, a stack trace of the

crash is logged to record the status of program execution. To fix

the crash-causing fault (crashing fault or fault for short), developers

need to locate the root cause of the crash in the source code. Such

localization is known as crash localization (Wu et al., 2014).

Crash localization is challenging. A stack trace consists of a run-

time exception and a function call sequence. Crash localization

takes the stack trace and the source code as input and outputs the

location of the fault. Besides the stack trace, crash localization can

leverage bug reports from bug tracking systems such as Bugzilla,

or consulting websites such as StackOverflow. However, the infor-

mation obtained from bug tracking systems or consulting websites

can be incomplete or inaccurate; this makes it difficult to automate

collection and validation. Hence, in this paper we only focus on the

stack traces and source code. In an empirical study of Mozilla crash

data, Wu et al. (2014) found that 59% to 67% of the crashing faults

can be found in functions that are inside stack traces while 33%
∗ Corresponding author.

E-mail addresses: yongfenggu@whu.edu.cn (Y. Gu), jxuan@whu.edu.cn (J. Xuan),

hongyu.zhang@newcastle.edu.au (H. Zhang), lanxinzhang@whu.edu.cn (L. Zhang),

qingna@ruanmou.net (Q. Fan), xxie@whu.edu.cn (X. Xie), qty@whu.edu.cn (T. Qian).

C

d

c

a

https://doi.org/10.1016/j.jss.2018.11.004

0164-1212/© 2018 Published by Elsevier Inc.
o 41% of crashing faults are outside stack traces. In general, lo-

alizing crashing faults that reside outside of stack traces requires

ore effort since developers need to examine the function call

raph and to check a larger amount of source code. For example,

ong et al. (2014) studied crashes of Firefox 3.6. They found that

y expanding the call depth by 1 (i.e., checking all the functions

hat are directly called by any functions in the stack trace), devel-

pers have to examine 624 more functions and only eight more

rashing faults can be discovered. By expanding the call depth by

 (i.e., checking all the functions that are two call steps away from

ny function in the stack trace), 964 more functions have to be ex-

mined and only five more crashing faults can be discovered. Al-

hough the number of discovered faults increases, the developers

ave to spend much more effort in examining a large number of

unctions outside the stack trace. Additionally, a crashing fault may

ssociate with a hidden or private function that does not appear in

he API reference document, which increases the difficulty of crash

ocalization. Hence, predicting whether a crashing fault resides in

 stack trace or not can assist developers to speed-up crash local-

zation and to prioritize debugging effort s (Theisen et al., 2015).

In this paper, we proposed an automatic approach, namely

raTer (short for Cra sh de Te cto r), to address the problem of pre-

icting crashing fault residence, which aims to predict whether a

rashing fault resides in a stack trace. This problem is modeled as

 binary classification problem with two class labels: InTrace and

https://doi.org/10.1016/j.jss.2018.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.11.004&domain=pdf
mailto:yongfenggu@whu.edu.cn
mailto:jxuan@whu.edu.cn
mailto:hongyu.zhang@newcastle.edu.au
mailto:lanxinzhang@whu.edu.cn
mailto:qingna@ruanmou.net
mailto:xxie@whu.edu.cn
mailto:qty@whu.edu.cn
https://doi.org/10.1016/j.jss.2018.11.004

Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104 89

O

m

e

t

t

t

E

s

p

b

p

t

f

m

s

a

v

p

s

l

c

s

P

a

t

t

r

o

w

I

8

w

t

t

o

a

s

t

p

a

t

i

2

t

2

p

a

e

h

t

t

i

t

s

l

i

a

c

t

s

(

F

d

p

r

t

w

e

a

c

s

a

A

f

F

n

c

l

c

a

r

t

C

t

f

o

d

t

i

c

f

l

b

T

c

2

f

r

l

t

t

1 In Java programs, a function is usually called a method. In this paper, we keep

using the term “function” to avoid the ambiguity between an “approach” and a

“method”.
2 Bugzilla, http://bugzilla.org/ .
3 Jira, http://issues.apache.org/jira/ .
4 Mozilla Crash Reporter, http://crash-stats.mozilla.com/ .
5 Fedora Analysis Framework, http://retrace.fedoraproject.org/faf/summary/ .
6 Bug report of Math-718, http://issues.apache.org/jira/browse/MATH-718 .
utTrace . That is, a crashing fault resides in or out of the state-

ents that are recorded in a stack trace. For each crash, CraTer

xtracts 89 features from the faulty program as well as its stack

race to characterize the residence of the crashing fault in the stack

race. Examples of the features include the type of the exception in

he stack trace and the number of files included in the source code.

ach crash corresponds to a vector of 89 feature values. CraTer con-

ists of two major phases: the training phase and the deployment

hase. In the training phase, a predictive model is built by com-

ining a decision tree classifier with a strategy of imbalanced data

rocessing. In the deployment phase, the trained model is used

o predict whether the crashing fault resides in the stack trace

or a newly-submitted crash. The predicted results can assist the

anual crash localization work performed by developers. For in-

tance, consider a stack trace with 10 lines. Analyzing all frames

nd method calls that are listed in the stack trace requires the re-

iew of many lines of code. If our approach CraTer can identify the

rediction result of InTrace , i.e., the crashing fault is predicted in-

ide the stack trace, then we can focus on the review of the 10

ines of code recorded in the stack trace. This can save the time

ost and the human labor.

We evaluated our approach CraTer on seven real-world, open-

ource Java projects: Apache Commons Codec, Ormlite-Core, JSql-

arser, Apache Commons Collections, Apache Commons IO, Jsoup,

nd Mango. We seeded faults using program mutation techniques

o mimic real crashes and randomly sample 500 crashes for ten

imes. The overall accuracy on all the crashes of seven projects

eaches 92.7%. Experiments on each individual project show that

ur approach can correctly predict the residence of crashing faults

ith the accuracy ranging from 86.0% to 95.7%. The F-measure of

nTrace and OutTrace for individual projects are from 65.0% to

7.9% and from 90.8% to 97.9%%, respectively. In our experiments,

e also analyzed the most dominant features among the 89 fea-

ures, which have the strongest correlation with the residence of

he crashing faults. To find out the impact of different classifiers

n the prediction results, we compared six classification algorithms

s well as four imbalanced data processing strategies. We also

howed the time cost and the saved effort of using CraTer.

This paper makes the following main contributions:

• We proposed an automatic approach, namely CraTer, to predict

whether a crashing fault resides in a stack trace or not.
• We empirically evaluated CraTer on crashes from seven real-

world, open-source projects. The results demonstrate that this

approach can achieve an accuracy of over 92% on all the crashes

under evaluation.

The rest of paper is organized as follows. Section 2 provides

he background of our work. Section 3 details our predictive ap-

roach and its feature extraction. Experimental setup and results

re presented in Section 4 and Section 5 , respectively. We brief the

hreats to the validity in Section 6 and describe the related work

n Section 7 . Finally, we conclude the paper in Section 8 .

. Background

In this section, we briefly introduce the background of stack

races and crash localization.

.1. Crashes and stack traces

Software may crash if an internal fault is triggered. Mainstream

rogramming languages have their own exception handling mech-

nism that can throw exceptions due to internal faults and catch

xceptions for further processing (Oliveira et al., 2018). Developers

ave to write source code to specify their steps to deal with excep-

ions (Li et al., 2018). Taking Java programs as an example, Java Vir-
ual Machine (JVM) pushes a function into the stack if a function

s called by the main program. 1 Once a crash appears, JVM aborts

he program execution and outputs the function calls stored in the

tack based on their call sequences. Modern software projects col-

ect software crashes to facilitate program debugging and bug fix-

ng. Many projects deploy a bug tracking system (such as Bugzilla 2

nd Jira 3) to enable users to submit a bug report to record the

rash of projects. Large-scale crash reporting systems are also used

o automatically collect crash reports from end users. Examples of

uch systems include Microsoft Windows Error Reporting System

 Dang et al., 2012), Mozilla Crash Reporter, 4 and Fedora Analysis

ramework. 5 Given a collected crash report, developers can repro-

uce the crashing scenario and then fix the faulty code. The major

art of a collected crash report is a stack trace, which consists of a

untime exception and a function call sequence at the moment of

he crash.

Fig. 1 shows a real-world crashing fault, Bug 718 in a

idely-used open-source library, Apache Commons Math. 6 The

xception type of this crash is ConvergenceException
nd is directly thrown from the function evaluate() in a

lass ContinuedFraction . According to the bottom of the

tack trace, all functions in Fig. 1 are called by executing

 function inverseCumulativeProbability() in a class

bstractIntegerDistribution .
A typical stack trace can be viewed as a list of n + 1 frames,

rom Frame 0 to Frame n (Wu et al., 2014; Chen and Kim, 2015).

rame 0 records the thrown exception of the crash; Frames 1 to

 represent the function call sequence. Each frame in the function

all sequence is a tuple of a class name, a function name, and a

ine ID. These records directly indicate the position of a function

all. For instance, the caller of the function regularizedBeta()
t Frame 2 is regularizedBeta() at Frame 3; the callee of

egularizedBeta() at Frame 2 is evaluate() at Frame 1.

According to a manually-written patch of Bug 718,

he root cause of the crash locates at Line 122 in

ontinuedFraction.java , which resides out of the stack

race. Thus, developers cannot directly identify where the crashing

ault resides and have to carefully review all related code to find

ut the root cause. As recorded in Bug 718, it finally took 107

ays from reporting the crash to finding out the patch. The large

ime cost and labor effort motivate us to address the problem

n this paper, i.e., how to assist developers to locate the root

ause. The idea is to automatically predict whether the crashing

ault is recorded in the stack trace or not. Before manual crash

ocalization, a developer can utilize our approach to find out a

inary result, i.e., the fault is inside the stack trace, or outside.

hen, based on the prediction, the developer can focus on related

ode rather than the whole project.

.2. Crash localization

It is difficult to localize the root cause of a crash although the

unction call sequence is recorded in the stack trace. We show the

easons as follows. First, there exist many lines of potentially re-

ated code in the recorded functions in a stack trace; for instance,

here exist 311 lines of code in all functions that are recorded in

he stack trace in Fig. 1 . Second, a function call sequence does not

http://bugzilla.org/
http://issues.apache.org/jira/
http://crash-stats.mozilla.com/
http://retrace.fedoraproject.org/faf/summary/
http://issues.apache.org/jira/browse/MATH-718

90 Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104

Fig. 1. Stack trace of Bug 718 in the project of Apache Commons Math.

t

s

p

b

i

t

a

n

c

p

3

w

p

a

t

n

a

w

3

s

i

o

t

a

t

k

I

i

t

S

w

a

d

i

e

t

p

3

i

c

t

a

a
directly link to a crashing fault due to the complexity of program

structures (Wu et al., 2016). Third, a crashing fault may associate

with a hidden or private function that does not appear in the API

reference documentation.

Crash localization is important for program debugging. The goal

of crash localization is to help developers find out the root cause

of a crash based on the given stack trace. The input of crash local-

ization is the stack trace and the source code while the output is

a ranked list of suspicious functions, which may contain the crash-

ing fault. Wu et al. (2014) proposed CrashLocator to synthesize the

approximate complete execution traces by expending the function

call sequence in the stack trace and then ranking suspicious func-

tions according to their pre-defined suspicious ranking metric.

A related problem is spectrum based fault localization, which

localizes faults based on passing and failing execution traces (Jones

and Harrold, 2005; Rui et al., 2007; Lucia et al., 2014; Xuan et al.,

2017b; Le et al., 2016). In contrast to spectrum based fault local-

ization, crash localization can only leverage the input of the stack

trace and the source code, rather than the program execution. This

makes accurate crash localization difficult. Wu et al. (2014) showed

that their tool CrashLocator, achieves 56.9% of the recall value

of crash localization when examining the top-10 recommended

functions. Searching for a fault under this recall value is time-

consuming.

3. Proposed approach: CraTer

In this section, we present our proposed approach, namely

CraTer, in four aspects: the class labeling, the overview of the pro-

posed approach, the feature extraction, and the learning algorithms

for imbalance issues.

3.1. Class labeling

The goal of our work is to predict crashing fault residence, i.e.,

identifying whether a crashing fault resides in the stack trace. We

consider a crash whose corresponding crashing fault can be found

in the stack trace as the InTrace class: there exists one frame in

the stack trace, whose recorded class, function, and line ID are all

matched with the faulty code. A crash whose crashing fault does

not exist in the stack trace is considered as the OutTrace class.

For example in Fig. 1 , if the crashing fault locates at Line 154 in the

function regularizedBeta() in the class Beta , then we label

the crash as InTrace , because we can find that Frame 2 in stack

trace is the position of fault; if the crashing fault is at Line 155 in

regularizedBeta() , then we can find that none of frames in

stack trace cover the fault, then we define the crash as OutTrace .

For an existing crash, we can directly identify whether the crash

belongs to either the class InTrace or OutTrace by checking its

bug-fixing log. We use these crashes as the training data. For a

newly-submitted crash report, we aim to predict its class label. In
his way, the original problem of whether the crashing fault re-

ides in the stack trace is transformed into a binary classification

roblem. Meanwhile, the classes of InTrace and OutTrace are im-

alanced: more crashing faults resides outside the stack traces. The

mbalanced distribution between InTrace and OutTrace may hurt

he performance of the predictive model. The major reason is that

 model can hardly characterize the InTrace crashes (i.e., the mi-

ority class) and tend to misclassify InTrace crashes into OutTrace

rashes (the majority class). It is challenging to build an effective

redictive model with imbalanced data.

.2. Overview

Fig. 2 depicts the overview of our proposed approach CraTer,

hich consists of two major phases: the training phase and the de-

loyment phase . For each crash, we first extract 89 features to char-

cterize the crash from its stack trace as well as its source code,

hen build a predictive model based on machine learning tech-

iques in the training phase; next in the deployment phase, once

 new crash report comes, we use the trained model to predict

hether the fault resides in a corresponding stack trace.

.2.1. Training phase

In the training phase, we take the faulty source code (i.e., the

ource code of a project that contains a fault) and its correspond-

ng stack trace as the input and train a predictive model as the

utput.

Given the source code and the stack trace, we extract 89 fea-

ures and its class label to form a feature vector with 89 features

nd one binary label, i.e., InTrace or OutTrace . Section 3.3 details

he process of feature extraction. Based on feature vectors of all

nown crashes, we train a classifier in machine learning to identify

nTrace or OutTrace . Generally, every binary classifier can be used

n our approach. In our work, we choose to combine a decision

ree algorithm with a SMOTE strategy for imbalanced classification.

MOTE is a well-known technique of imbalanced data processing,

hich re-constructs a balanced data distribution for the imbal-

nced data learning problem. The reason for this choice is that the

ecision tree performs well in our experiment (see Section 5) and

ts result is human-understandable; meanwhile, the SMOTE strat-

gy is stable in handling imbalanced classes (Han et al., 2011), i.e.,

he imbalanced distribution of InTrace and OutTrace in our ex-

eriment (see Section 4).

.2.2. Deployment phase

In the deployment phase, we take the model built in the train-

ng phase as well as a newly-submitted crash (including the source

ode and the corresponding stack trace) as input and then output

he final prediction result: the crash is InTrace or OutTrace . Given

 new crash, we also extract 89 features from both the source code

nd the stack trace. Then we use the predictive model to predict

Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104 91

Fig. 2. Overview of CraTer for predicting the residence of the crashing fault.

i

t

f

3

g

t

N

c

s

b

i

t

a

l

t

s

w

r

f

F

s

c

t

t

(

t

A

t

d

u

s

c

l

(

i

t

b

e

A

c

F

e

o

t

t

i

p

p

i

t

t

a

t

F

g

F

a

f

o

t

L

v

a

t

s

b

i

t

c

(

n

t

A

t

t

t

A

f

ts class label. This predicted class label could be used as a hint

o support developers to assist their manual crash localization. We

urther elaborate our learning algorithms in Section 3.4 .

.3. Feature extraction

To build the predictive model, we extract 89 features from the

iven stack trace and the source code. As mentioned in Section 2.1 ,

he function call sequence in the stack trace consists of n frames.

ote that functions in some frames may not reside in the source

ode. For instance, a crashing fault of a third-party library in the

ource code cannot be localized in Java Development Kit (JDK);

ut some JDK code may appear in a frame, such as throwing an

ndex-out-of-bounds exception when assigning an incorrect index

o an array variable. Meanwhile, hidden or private functions can

lso bring in the difficulty of localizing the root cause. Given the

ist of all frames in a stack trace, a sublist of frames can be ob-

ained by filtering out the functions, which are not in the given

ource code. Developers expect the faulty code resides in some-

here in this sublist of frames. For the sake of simplification, we

efer to the first frame and the last frame in this sublist as the top

rame and the bottom frame , respectively. For instance, Frame 1 in

ig. 1 is the top frame while Frame n is the bottom frame. If the

ublist of frames contains only one frame, the top frame is identi-

al to the bottom one.

Table 1 shows the detailed list of these 89 features. The 89 fea-

ures are divided into 5 groups: 11 features related to the stack

race (ST01 to ST11), 23 features extracted from the top frame

CT01 to CT23), 23 features extracted from the bottom frame (CB01

o CB23), 16 features normalized from the top frame (AT01 to

T16), and 16 from the bottom frame (AB01 to AB16).

Features related to the stack trace . We extract features related

o the stack trace since we expect these features can reflect the

ifficulty of handling crashes. An empirical study has explored the

sefulness of stack traces during debugging (Schröter et al., 2010);

tack traces can be utilized to assist several software tasks, such as

rash reproduction (Chen and Kim, 2015), bug-report-oriented fault

ocalization (Wong et al., 2014), and null pointer exception finding

 Jiang et al., 2012). The group of Features ST01 to ST11 record the

tems that characterize the given stack trace, such as the type of

he exception (ST01), the number of frames (ST02), 7 and the num-

er of classes in stack trace after removing duplicate ones (ST03).
7 These frames belong to a subset of the original stack trace without the interfer-

nce by third-party functions or classes. In our work, we assume that all third-party

PIs are fault free although a bad implementation or design of third-party API can

ause an unanticipated crash (Kechagia et al., 2015)

3

s
eatures ST10 and ST11 are also included in this group, which are

xtracted based on the source code of the project, i.e., the number

f Java files and the number of classes (one Java file may contain

wo or more classes). Both these features approximately describe

he scale of source code of the whole project.

Features from the top frame . The top frame in the stack trace

s the location where the unexpected exception is thrown. The em-

irical study conducted by Schröter et al. (2010) showed the im-

ortance of the top frame in stack trace: 40% of faults are fixed

n the top frame and close to 88% of bugs are fixed within the

op-10 frames. The group of Features CT01 to CT23 is mined from

he top function and the top class , which are short for the function

nd the class that exist in the top frame, respectively. We mined

hese features from the source code rather than the stack trace.

eatures in the top function or the top class characterize the pro-

ram state when the program crashes. Among these 23 features,

eatures CT1 to CT6 are designed to characterize the top class, such

s the number of local variables, whether the top class is inherited

rom other classes (a binary feature), and the Lines of Code (LoC)

f comments. In addition, we use the next 17 features, i.e., CT07

o CT23, to capture the knowledge from the top function, such as

oC, the number of function calls, and the number of assignments.

Features from the bottom frame . The bottom frame can pro-

ide the message of the initial function call. We refer the function

nd the class in the bottom frame as bottom function and the bot-

om class , respectively. In this group, Features CB01 to CB23 are

imilar to Features CT01 to CT23; these features are based on the

ottom frame instead. Given the source code, all the function calls

n the frames are directly or indirectly called by the function in

he bottom frame. Thus, we capture these 23 features to further

haracterize the crashing fault.

Features normalized by LoC of the CT features . In 16 features

CT08 to CT23) related to the top function, we normalize the origi-

al features by LoC and get Features AT01-AT16. Each of these fea-

ures calculates the value per line in the top function. For example,

T01 records the number of parameters per line in the top func-

ion while AT16 records the number of binary operators.

Features normalized by LoC of the CB features . Features AB01

o AB16 are similar to Features AT1 to AT16, except that these fea-

ures AB01 to AB16 are based on the bottom frame. For example,

B01 records the number of parameters per line in the bottom

unction.

.4. Learning algorithms

In CraTer, predicting whether a crashing fault resides in the

tack trace is transformed into a binary classification problem

92 Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104

Table 1

Detailed list of 89 features in five groups.

Feature Description

Group ST – features related to the stack trace

ST01 Type of the exception in the crash

ST02 Number of frames of the stack trace

ST03 Number of classes in the stack trace

ST04 Number of functions in the stack trace

ST05 Whether an overloaded function exists in the stack trace

ST06 Length of the name in the top class

ST07 Length of the name in the top function

ST08 Length of the name in the bottom class

ST09 Length of the name in the bottom function

ST10 Number of Java files in the project

ST11 Number of classes in the project

Groups CT and CB – features extracted from the top frame and the bottom frame

CT01 CB01 Number of local variables in the top/bottom class

CT02 CB02 Number of fields in the top/bottom class

CT03 CB03 Number of functions (except constructor functions) in the top/bottom class

CT04 CB04 Number of imported packages in the top/bottom class

CT05 CB05 Whether the top/bottom class is inherited from others

CT06 CB06 LoC of comments in the top/bottom class

CT07 CB07 LoC of the top/bottom function

CT08 CB08 Number of parameters in the top/bottom function

CT09 CB09 Number of local variables in the top/bottom function

CT10 CB10 Number of if-statements in the top/bottom function

CT11 CB11 Number of loops in the top/bottom function

CT12 CB12 Number of for statements in the top/bottom function

CT13 CB13 Number of for-each statements in the top/bottom function

CT14 CB14 Number of while statements in the top/bottom function

CT15 CB15 Number of do-while statements in the top/bottom function

CT16 CB16 Number of try blocks in the top/bottom function

CT17 CB17 Number of catch blocks in the top/bottom function

CT18 CB18 Number of finally blocks in the top/bottom function

CT19 CB19 Number of assignment statements in the top/bottom function

CT20 CB20 Number of function calls in the top/bottom function

CT21 CB21 Number of return statements in the top/bottom function

CT22 CB22 Number of unary operators in the top/bottom function

CT23 CB23 Number of binary operators in the top/bottom function

Groups AT and AB – features normalized by LoC from Groups CT and CB

AT01 AB01 CT08 / CT07 CB08 / CB07

AT02 AB02 CT09 / CT07 CB09 / CB07

...

AT16 AB16 CT23 / CT07 CB23 / CB07

i

n

S

o

4

i

s

S

4

t

c

t

c

w

p

e

a

i
based on the 89 extracted features. Generally, any binary classifier

can be used, such as the Bayesian Network or the Support Vector

Machine (SVM). CraTer uses a decision tree algorithm to predict

whether a crash belongs to the InTrace class or OutTrace . Deci-

sion tree is a family of widely-used classification algorithms, which

construct binary trees by evaluating the feature values (Han et al.,

2011). In a generated decision tree, each node denotes evaluating a

feature and each branch presents the outcome of the evaluation;

each leaf is a predicted class. During the development of many

novel decision tree algorithms, the criteria of dividing nodes of the

decision trees is an important factor of the performance, such as

the criteria of using the information gain in ID3 (Quinlan, 1993),

the gain ratio in C4.5 (Quinlan, 1993), and the Gini index in CART

Breiman et al. (1984) . In this paper, we choose a widely-used and

robust decision tree algorithm, C4.5, as our classifier.

The numbers of crashes in the InTrace and OutTrace classes

are not balanced. As we will see in Section 4 , all the projects in

our experiment contain fewer crashes in the InTrace class than in

the OutTrace class. The imbalanced issue of data distribution may

lead to inaccurate classification (He and Garcia, 2009). A typical

classifier, such as SVM, assumes that the class distribution in the

dataset is balanced. Thus, directly conducting classification without

handling the imbalanced issue may lead to unfavorable prediction

accuracy. To provide a general and accurate result, CraTer combines

the decision tree, C4.5, with the SMOTE strategy to address the im-

balanced issue. The SMOTE strategy (Chawla et al., 2002) is a typ-
 a
cal oversampling technique; it synthesizes the samples of the mi-

ority class to balance the class distribution. During the synthesis,

MOTE randomly constructs a new minority instance based on one

riginal minority instance and its corresponding nearest neighbors.

. Experimental setup

In this section, we introduce the data preparation and the

mplementation. The data preparation consists of three main

teps, as shown in Section 4.1 ; the implementation details are in

ection 4.2 .

.1. Data preparation

Our work aims to build a learning model to predict whether

he crashing fault resides in the stack trace. Thus, a number of

rashes with known crashing fault locations need to be collected

o provide an adequate dataset. However, it takes much effort to

ollect and reproduce real-world crashes. In existing crash-related

orks, Chen and Kim (2015) use a dataset of 52 crashes from three

rojects; Wu et al. (2014) collect a dataset of 160 crashes from

ight projects; Gu et al. (2016) select 45 reproducible crashes from

 dataset, called Defects4J (Just et al., 2014). In our work, the learn-

ng model requires a dataset for its training phase. All the three

bove datasets cannot be directly used due to the small number of

Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104 93

Table 2

Basic information of the seven projects used in the experiment.

Project Version LoC #Classes #Test cases #Mutants #Killed mutants #Mutants before selection

Codec 1.10 14,480 84 662 2901 2601 610

Ormlite-Core 5.1 20,024 175 1059 3563 2751 1,303

JSqlParser 0.9.7 32,868 203 489 8757 5636 647

Collections 4.1 61,283 435 16,063 6650 5300 1,350

IO 2.5 26,018 122 1157 3337 2728 686

Jsoup 1.11.1 15,460 137 557 2657 1892 601

Mango 1.5.4 30,208 475 372 5149 1570 733

Total - 200,341 1,631 20,359 33,014 22,478 6,961

Average - 28,620 233 2,908 4,716 3,211 944

c

t

J

s

w

w

a

i

T

fi

s

o

w

C

m

c

O

a

P

c

a

I

a

w

r

s

“

p

t

o

b

“

t

b

k

t

F

w

o

t

c

t

4

(

u

t

s

t

t

o

o

m

c

fi

m

N

t

c

4

e

t

k

a

a

t

t

c

t

o

a

a

t

4

t

s

c
rashes. Therefore, we used real-world projects with seeded faults

o prepare the experimental dataset.

In the evaluation, we use seven widely-studied open-source

ava projects. To select these projects, first, we randomly selected

everal widely-studied and open-source Java projects from prior

ork (Xuan et al., 2016; Qiu et al., 2016) as well as GitHub projects

ith a large number of stars. Second, we removed projects that

re difficult to be configured in a local machine. The configuration

ssues mainly related to the building dependency and platforms.

hird, we generated mutants for all projects (see Section 4.2) and

ltered out the projects with a small number of crashes. The rea-

on is that CraTer learns a predictive model from known data

f crashes; the learning process relies on sufficient data. Finally,

e have seven projects left: Apache Commons Codec, 8 Ormlite-

ore, 9 JSqlParser, 10 Apache Commons Collections, 11 Apache Com-

ons IO, 12 Jsoup, 13 and Mango. 14

Apache Commons Codec implements many techniques of de-

oders and encoders, such as Base64, Hex, Phonetic and URLs.

rmlite-Core is the core part of Ormlite, which mainly provides

 lightweight parser from Java objects to SQL databases. JSql-

arser parses SQL statements and translates into hierarchical Java

lasses. Apache Commons Collections provides many improvements

nd functionalities for the Java collections in JDK. Apache Commons

O is a library to assist the implementation of Java IO. Jsoup is

 HTML parser library to manipulate and extract data from real-

orld HTML files. Mango is a fast distributed framework for object

elational mapping.

Table 2 shows the details of the seven subject projects. The

tatistics in this table are collected via SourceMonitor. 15 Column

Version” indicates the version of the project in use in our ex-

eriment; Columns “LoC”, “# Classes”, and “# Test Cases” describe

he lines of code without blank lines and comments, the number

f classes in the source code without test cases, and the num-

er of test cases executed in each project, respectively. Columns

Mutants”, “# Killed”, and “# Mutants before selection” record

he number of mutants generated by program mutation, the num-

er of mutants that fails in test execution, and the number of the

ept crashes, respectively.

We collected crashes as our dataset based on the following

hree steps. Details of data preparation are explained as follows.

irst, we generated seeded (injected) faults for each subject project

ith program mutation; second, we filtered out the mutants with-

ut leading to crashes with four sub-strategies; third, among all

he kept crashes in a subject project, we randomly selected 500
8 Apache Commons Codec, http://commons.apache.org/codec/ .
9 Ormlite-Core, http://github.com/j256/ormlite-core.

10 JSqlParser, http://github.com/JSQLParser/JSqlParser.
11 Apache Commons Collections, http://commons.apache.org/collections/ .
12 Apache Commons IO, http://commons.apache.org/io/ .
13 Jsoup, http://jsoup.org/ .
14 Mango, http://www.jfaster.org/ .
15 SourceMonitor, http://www.campwoodsw.com/ .

f

c

s

w

t

s

rashes to form our dataset. Fig. 3 describes the steps of preparing

he dataset.

.1.1. Seeding faults with program mutation

We utilized program mutation techniques (Zhang et al., 2016),

 Gopinath et al., 2016) to seed faults to real-world projects to sim-

late real crashes. For each of the seven subject projects, we used

he PIT tool (see in Section 4.2.1) to generate slightly changed

ource code (i.e., single-point mutation) with seven default muta-

ion operators. Table 3 shows a detailed list of all mutation opera-

ors in use. The column “Mutation operator” represents the name

f operators and the column “Description” describes the detailed

peration in program mutation. After program mutation, 33,014

utants are generated for the seven subject projects.

Table 4 shows the top-5 reasons for crashes that are

aused by each mutation operator in all the projects. We

nd that the reasons for crashes change according to the

utation operators. ArrayIndexOutOfBoundsException and

ullPointerException widely exist in crashes by all muta-

ion operators; the negatives invert mutator only generate seven

rashes among all projects.

.1.2. Filtering out mutants without crashes

In this step, we filtered out four kinds of mutants. First, we ex-

cuted all test cases on each mutant and then discarded the mu-

ants, which can pass all test cases. Therefore, we collected 22,478

illed mutants. Second, several faults may not trigger crashes since

ssertions in given test cases may be violated before crashes. If an

ssertion is violated, no crash will be triggered except an asser-

ion failure (i.e., AssertionFailedError in Java). Third, when

wo variables that implement a Java-defined comparable type, a

omparison failure (i.e., ComparisonFailure in Java) may be

hrown if the types are not comparable. Fourth, the crashes that

nly records test cases are filtered out, because no information

bout the source code is provided. 16 Hence, we filtered out the

bove four kinds of mutants and then 6961 crashes are kept in

otal.

.1.3. Randomly selecting crashes

In each project, we randomly selected 500 crashes for 10 times;

hus, we have 10 datasets for each project. For instance, we can

elect 10 datasets of 500 crashes from Apache Commons Codec,

alled Codec i where 1 ≤ i ≤ 10. Then we have in total 70 datasets

or all seven projects. The number of 500 crashes is chosen be-

ause each project under evaluation has over 600 mutants before

election; then we chose 500 to simplify the calculation.

To obtain a mixed dataset of all projects, we combined datasets

ith the same index together. Then we get 10 combined datasets,
16 A stack trace that only records test cases is mainly caused by the implementa-

ion of test class inheritance. Once the parent test class is involved in the crash, no

ource code is directly recorded in the stack trace.

http://commons.apache.org/codec/
http://commons.apache.org/collections/
http://commons.apache.org/io/
http://jsoup.org/
http://www.jfaster.org/
http://www.campwoodsw.com/

94 Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104

Fig. 3. Three steps of data preparation in the experimental setup.

Table 3

Seven mutation operators in use.

Mutation operator Description

Conditional boundary mutator Adding or removing the boundary in relational operators

Increment mutator Replacing between ++ and -- or between + = and - =

Negatives invert mutator Inverting negation of integer and floating point numbers

Math mutator Replacing one arithmetic operator to another arithmetic operator

Conditional negating mutator Inverting negation of relational operators

Return value mutator Mutating the return value of a function call

Void function call mutator Removing a void function call

Table 4

Top-5 reasons for crashes that are caused by each mutation operator.

Mutation operator Top-5 reasons (the count of each reason) †

Conditional boundary mutator ArrayIndexOutOfBounds (395), IndexOutOfBounds (66), IllegalArgument (63), SQL (16), NullPointer (14)

Increment mutator ArrayIndexOutOfBounds (62), StringIndexOutOfBounds (34), NegativeArraySize (7), IndexOutOfBounds (5),

Decoder (4)

Negatives invert mutator ArrayIndexOutOfBounds (5), Runtime (1), IndexOutOfBounds (1)

Math mutator ArrayIndexOutOfBounds (314), JSQLParser (146), IndexOutOfBounds (68), StringIndexOutOfBounds (64),

TokenMgrError (54)

Conditional negating mutator NullPointer (721), IllegalArgument (342), ArrayIndexOutOfBounds (240), SQL (165), JSQLParser (130)

Return value mutator NullPointer (675), Runtime (461), IllegalArgument (117), Initialization (67), SQL (56)

Void function call mutator NullPointer (80), IllegalState (37), IO (31), SQL (15), TokenMgrError (11)

† We omit the word “Exception” for sake of space, e.g., NullPointer is short for NullPointerException.

Fig. 4. Distribution of InTrace and OutTrace crashes of 500 crashes in each

project.

4

i

t

17 The dataset and the prototype of CraTer are publicly available, http://cstar.whu.

edu.cn/p/crater/ .
each of which has 3500 crashes from seven projects. We refer a

combined dataset to Combined i ,

C ombined i = C odec i ∪ Orml ite i ∪ JSql P arser i ∪ Col l ections i

∪ IO i ∪ Jsoup i ∪ Mango i

where i denotes the i th randomly sampling and 1 ≤ i ≤ 10. Accord-

ing to the class labeling in Section 3.1 , we label these crashes into

the InTrace class and the OutTrace class for training or evaluating

the predictive model.

Furthermore, to ensure the consistency of distribution of the

two classes (InTrace and OutTrace) before and after randomly se-

lection, we employ the proportional random sampling to maintain

the original distribution of InTrace and OutTrace when sampling

500 crashes from the whole project. That is, given one project, if

the sampling size is 500, the number of crashes in InTrace or Out-

Trace does not change during each sampling. Fig. 4 presents the

distribution of crashes in both classes in each project after ran-

domly selection. We notice that the distribution of classes is im-

balanced: the crashes in OutTrace are more than those in InTrace .
.2. Implementation

We implemented our approach in Java and Python: Java is used

n program mutation and feature extraction while Python is used

o filter out the invalid mutants. 17

http://cstar.whu.edu.cn/p/crater/

Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104 95

4

i

(

m

t

o

e

p

4

g

l

f

s

i

4

W

m

t

i

C

5

d

t

S

5

C

u

2

n

a

r

(

P

a

o

m

c

p

i

F

t

u

s

o

t

1

fi

5

C

e

a

e

c

c

c

p

s

d

e

d

r

e

h

f

5

i

5

c

a

S

e

t

s

i

i

c

n

i

A
.2.1. Program mutation

We chose PIT 18 as our mutation tool in data preparation. PIT

s one of the most robust and efficient tools in mutation testing

 Delahaye and du Bousquet, 2013). Given a subject project, PIT can

utate one point in the original project using pre-defined muta-

ion operators. All seven mutation operators in Table 3 are default

perators in PIT. Note that existing work (Zhang et al., 2013; Moon

t al., 2014) has also used program mutation to mimic real-world

rogram faults.

.2.2. Feature extraction

Feature extraction in CraTer is implemented through static pro-

ram analysis using Spoon. 19 Spoon (Pawlak et al., 2016) is a Java

ibrary, which supports program analysis and transformation. Be-

ore extracting features, we properly configured and compiled each

ubject project since Spoon requires compilable source code as the

nput.

.2.3. Machine learning

Machine learning algorithms in CraTer are implemented using

eka. 20 Weka, developed by Hall et al. (2009) , is a collection of

achine learning and data mining algorithms. Techniques of fea-

ure selection and imbalanced class processing methods are also

ntegrated into Weka.

All experiments are run on a PC with an Intel Core i7 3.60GHz

PU and 8 GByte memory.

. Experimental results

We first present four widely-used metrics to evaluate our pre-

ictive model in Section 5.1 ; then we propose four research ques-

ions in Section 5.2 ; finally, experimental results are given in

ection 5.3 .

.1. Evaluation metrics

We use precision, recall, F-measure, and accuracy to evaluate

raTer. These four evaluation metrics are standard metrics to eval-

ate the prediction performance (He and Garcia, 2009; Han et al.,

011), and are widely-used in recent work of software mainte-

ance (Wang et al., 2014; Xia et al., 2015; Li et al., 2016). Given

 class X , i.e., InTrace or OutTrace , we define the evaluation met-

ics based on True Positive (TP), False Positive (FP), True Negative

TN), and False Negative (FN) as follows,

TP (X): # of crashes in X that are predicted as X;

FP (X): # of crashes not in X that are predicted as X;

TN (X): # of crashes not in X that are not predicted as X;

FN (X): # of crashes in X that are not predicted as X.

The detailed metrics are given as follows. Among these metrics,

recision reflects the ratio of truly predicted positive samples in

ll samples predicted as positive, while recall represents the ratio

f truly predicted positive samples in all true positive samples. F-

easure is the trade-off metric between the precision and the re-

all, i.e., a high precision (or recall) might result in a low recall (or

recision). Accuracy calculate the ratio of truly predicted samples

n all samples.

P recision (X) =

T P (X)

T P (X) + F P (X)

Recal l (X) =

T P (X)

T P (X) + F N(X)
18 PIT, http://pitest.org/ .
19 Spoon, http://spoon.gforge.inria.fr/ .
20 Weka, http://www.cs.waikato.ac.nz/ml/weka/ .

e

o

o

d
 - measure (X) =

2 × P recision (X) × Recal l (X)

P recision (X) + Recal l (X)

Accuracy (X) =

T P (X) + T N(X)

T P (X) + T N(X) + F P (X) + F N(X)

We performed ten-fold cross validation to evaluate the predic-

ion performance of CraTer. Ten-fold cross validation is a widely-

sed evaluation method in data mining. This method randomly

plits the original dataset into 10 equal-size folds. In each time,

ne fold is selected as the dataset in the deployment phase and

he other nine folds are as the dataset in the training phase. After

0-time evaluation, we got 10 results and use their average as the

nal result.

.2. Research question

We empirically evaluated our proposed approach, namely

raTer, by answering four Research Questions (RQs). These RQs

xamine the effectiveness of the proposed approach, the imbal-

nced data processing strategies, the impactful features, and the

fficiency as follows.

RQ1 . How effective is our approach in predicting whether a

rashing fault resides in stack traces or not?

We evaluated the effectiveness to show whether our approach

an be used in practice. Four evaluation metrics are examined on

rashes from seven subject projects.

RQ2 . Can imbalanced data processing strategies improve the

rediction results?

In our approach, we combined an imbalanced data processing

trategy, i.e., SMOTE, with the decision tree algorithm (C4.5) to ad-

ress the imbalance issue of crash data. Thus, we compared the

ffectiveness of the SMOTE strategy with that of other imbalanced

ata processing strategies.

RQ3 . Which features are more impactful on the prediction

esults?

Our approach is conducted based on 89 extracted features. This

xperiment can find out dominant features, i.e., the features that

ave more impact on the prediction.

RQ4 . How efficient is our approach in the prediction?

We calculated the time cost in millisecond and the manual ef-

ort in terms of lines of code.

.3. Results

In this section, we present and analyze the results of four RQs

n our experiment.

.3.1. RQ1. How effective is our approach in predicting whether a

rashing fault resides in stack traces or not?

We first used 10 combined datasets from seven subject projects

s overall datasets, i.e., Combined 1 to Combined 10 defined in

ection 4.1.3 , to evaluate the effectiveness of CraTer. Then the av-

rage results of 10 datasets are calculated as the overall evalua-

ion results. As mentioned in Section 3.4 , CraTer combines a deci-

ion tree classifier (C4.5) with the SMOTE strategy. In the exper-

ment, we used five other classifiers to conduct the comparison,

ncluding RandomForest, i.e., an ensemble classifier of multiple de-

ision trees, BayesNet, i.e., a network classifier of multiple Bayesian

odes, SMO, i.e., a sequential minimal optimization classifier, KStar,

.e., a lazy learning classifier, and SVM (Support Vector Machine).

ll these classifiers are also combined with the same strategy to

liminate the risk of imbalanced data, i.e., SMOTE.

For parameters of classifiers, we followed the guide document

f Weka. In C4.5, a decision tree is built with the confidence factor

f 0.25 within 3 folds; in RandomForest, the maximum number of

ecision trees is set to 100; in SMO, the complexity is set to 1.0

http://pitest.org/
http://spoon.gforge.inria.fr/
http://www.cs.waikato.ac.nz/ml/weka/

96 Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104

Table 5

Ten-fold cross validation on all the crashes.

Classifier InTrace OutTrace Accuracy

Precision Recall F-measure Precision Recall F-measure

C4.5 0.818 0.792 0.805 0.952 0.959 0.955 0.927

RandomForest 0.786 0.706 0.744 0.933 0.955 0.944 0.908

BayesNet 0.452 0.754 0.565 0.932 0.787 0.853 0.781

SMO 0.559 0.528 0.543 0.891 0.903 0.897 0.832

KStar 0.663 0.661 0.662 0.921 0.922 0.921 0.873

SVM 0.660 0.501 0.569 0.890 0.940 0.914 0.857

d

i

e

t

e

c

l

d

t

d

o

c

t

c

a

h

g

c

S

b

t

W

e

s

c

s

d

t

o

μ

w

u

t

α

p

i

7

d

c

b

w

t

μ
and the calibrator is the logistic regression; in SVM, the cache size

is set to 40 and the loss is set to 0.1; in SMOTE, the number of

nearest neighbors is set to 5. For each combined dataset Combined i
(1 ≤ i ≤ 10), we conducted ten-fold cross validation and recorded

the results. Then we calculated the average result of 10 datasets,

i.e., Combined 1 to Combined 10 .

Table 5 presents the average results on 10 combined datasets.

As shown in the table, all classifiers except BayesNet can achieve

the accuracy over 0.80. Specially, C4.5 achieves the best accuracy

among these six classifiers under evaluation: it can reach the high-

est accuracy of 0.927 and also achieve the highest Precision, Recall,

and F-measure values for both classes. In addition, RandomForest

preforms slightly worse than C4.5.

For each individual project, we also performed ten-fold cross

validation on one crash dataset (e.g., Codec i in the project Codec)

and calculate the average results for its 10 datasets (e.g., Codec 1 to

Codec 10). Table 6 shows the average experimental results of each

project. COD, ORM, JSQ, COL, IO, JSO, and MAN denote the projects

of Apache Commons Codec, Ormlite-Core, JSqlParser, Apache Com-

mons Collections, Apache Commons IO, Jsoup, and Mango, respec-

tively.

As shown in Table 6 , no classifier can completely beat all the

others for all projects. C4.5 performs well among the six classifiers

under evaluation in all the projects. We can observe several facts

as follows. First, in Codec, Ormlite-Core, and Collections, C4.5 can

get the highest values in all seven metrics (i.e., the precision, recall,

F-measure for both classes, and the accuracy). Second, C4.5 can

reach the highest accuracy in the first six projects (Codec, Ormlite-

Core, JSqlParser, Collections, IO, and Jsoup); one exception is the

accuracy of Mango: C4.5 reaches 0.954, which is extremely close

to the highest value, i.e., 0.960 by RandomForest and SMO. Third,

in seven metrics of each project, C4.5 can at least get three highest

values, except Mango. Fourth, C4.5 can reach the most balanced re-

sults for both InTrace and OutTrace classes; meanwhile, none of

its metric values is under 0.6.

Results in Tables 5 and 6 also surprise us and break the in-

ertial thinking in machine learning that a simple classifier, such

as C4.5 may not outperform complex ones, such as RandomForest.

In our experiment, we have carefully tuned the setup parameters

of RandomForest and other classifiers. For instance, in RandomFor-

est, we gradually tuned major parameters according to the param-

eter ranges, e.g., increasing 50 each time for the maximum number

of decision trees. As shown in the above results, well-tuned clas-

sifiers, such as RandomForest, cannot achieve better performance

than C4.5.

Answer to RQ 1 . Our approach is effective in predicting

whether a crashing fault resides in the stack trace or not. Among

six classifiers under evaluation, C4.5 performs the best.

5.3.2. RQ2. Can imbalanced data processing strategies improve the

prediction results?

As mentioned in Section 4.1 , the distribution of crashes in In-

Trace and OutTrace classes is imbalanced: crashes in the InTrace

class are fewer than those in OutTrace . We empirically evaluated
ifferent imbalanced data processing strategies for overcoming the

mbalanced classification issue.

To compare with the combination of C4.5 and the SMOTE strat-

gy, we replaced the SMOTE strategy with no strategy (called NoS-

rategy for short), cost-sensitive learning, and resampling. NoStrat-

gy means we do not apply any strategy for imbalanced data pro-

essing and directly use a classifier to train a model; cost-sensitive

earning (Elkan, 2001) handles the imbalanced issue by assigning

ifferent costs to misclassified data, which are characterized with

he cost matrix; resampling (He and Garcia, 2009) is a simple and

irect sampling method, which randomly selects samples from the

riginal dataset to construct a new balanced dataset.

Fig. 5 demonstrates the impact of different strategies of pro-

essing imbalanced data on the dataset. For the OutTrace class,

he four strategies, including NoStrategy, achieve similar results,

lose to 1.0. For the InTrace class, SMOTE reaches better recall

nd F-measure values than NoStrategy while NoStrategy can get

igher precision values. For the accuracy, all four strategies also

et similar results close to 1.0. Additionally, the two strategies of

ost-sensitive learning and resampling perform slightly worse than

MOTE and NoStrategy.

In most projects, the SMOTE strategy and NoStrategy preforms

etter than the cost-sensitive learning and resampling. To fur-

her study the influence of the strategies on results, we used the

ilcoxon signed-rank test to compare the results between NoStrat-

gy and the SMOTE strategy in the seven projects. The Wilcoxon

igned-rank test (Wohlin et al., 2012) is a non-parametric statisti-

al hypothesis test, which is used to assess whether there exists a

ignificant difference between two independent samples.

As mentioned above, for each dataset of one project, we con-

ucted ten-fold cross validation and evaluated the effectiveness for

en times. Then, in each time of evaluation, we recorded the result

f evaluation metrics as a 7-dimension vector μ,

= < μ1 , μ2 , μ3 , μ4 , μ5 , μ6 , μ7 >

= < P recision (InTrace) , Recal l (InTrace) , F - measure (InTrace) ,

P recision (OutTrace) , Recal l (OutTrace) , F - measure (OutTrace) ,

Accuracy >

here an element μi of the vector μ denotes the value of i th eval-

ation metric and 1 ≤ i ≤ 7. For instance, i = 1 denotes the value of

he precision of the class InTrace .

Given the i th metric, we define one value in the evaluation as

i, j, k, l , i.e., the value of the i th metric on the k th dataset in j th

roject with the l th time of evaluation during ten-fold cross val-

dation. Then for the i th metric, we have in total 7 × 10 × 10 =
00 values since there are 7 projects, each project has 10 crash

atasets, and each dataset is evaluated for 10 times due to ten-fold

ross validation. Therefore, for each metric μi , 700 result pairs can

e formed to evaluate the difference between the results with or

ithout the SMOTE strategy.

Based on the 700 result pairs of each μi , we conducted

he Wilcoxon signed-rank test and got the p -value for each

: 1.0592e-27, 4.6484e-17, 8.3603e-11, 1.4685e-10, 1.6200e-11,
i

Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104 97

Table 6

Ten-fold cross validation on crashes from each project.

Project Classifier InTrace OutTrace Accuracy

Precision Recall F-measure Precision Recall F-measure

COD C4.5 0.761 0.812 0.785 0.921 0.895 0.908 0.871

RandomForest 0.720 0.752 0.736 0.897 0.881 0.889 0.843

BayesNet 0.564 0.707 0.627 0.866 0.777 0.819 0.757

SMO 0.566 0.776 0.654 0.892 0.756 0.818 0.762

KStar 0.664 0.701 0.681 0.875 0.855 0.865 0.810

SVM 0.553 0.668 0.604 0.852 0.779 0.813 0.747

ORM C4.5 0.878 0.881 0.879 0.960 0.959 0.960 0.939

RandomForest 0.774 0.762 0.768 0.921 0.926 0.923 0.885

BayesNet 0.613 0.814 0.699 0.930 0.827 0.876 0.824

SMO 0.623 0.683 0.651 0.891 0.861 0.875 0.816

KStar 0.706 0.687 0.696 0.897 0.904 0.900 0.850

SVM 0.656 0.565 0.604 0.861 0.898 0.879 0.815

JSQ C4.5 0.831 0.685 0.750 0.968 0.985 0.976 0.957

RandomForest 0.829 0.660 0.734 0.965 0.986 0.976 0.955

BayesNet 0.295 0.800 0.430 0.975 0.800 0.879 0.800

SMO 0.813 0.681 0.741 0.967 0.984 0.975 0.955

KStar 0.711 0.679 0.693 0.967 0.971 0.969 0.944

SVM 0.848 0.436 0.575 0.944 0.992 0.967 0.940

COL C4.5 0.804 0.741 0.771 0.936 0.954 0.945 0.911

RandomForest 0.762 0.611 0.677 0.906 0.951 0.928 0.882

BayesNet 0.543 0.553 0.547 0.886 0.880 0.883 0.814

SMO 0.581 0.608 0.593 0.900 0.889 0.894 0.832

KStar 0.574 0.573 0.573 0.892 0.892 0.892 0.827

SVM 0.626 0.349 0.447 0.852 0.947 0.897 0.826

IO C4.5 0.813 0.768 0.789 0.937 0.951 0.944 0.911

RandomForest 0.820 0.757 0.787 0.935 0.954 0.944 0.911

BayesNet 0.665 0.711 0.687 0.919 0.901 0.910 0.860

SMO 0.734 0.769 0.750 0.935 0.923 0.929 0.890

KStar 0.759 0.744 0.751 0.930 0.934 0.932 0.893

SVM 0.815 0.670 0.735 0.913 0.958 0.935 0.896

JSO C4.5 0.643 0.660 0.650 0.916 0.909 0.912 0.860

RandomForest 0.657 0.587 0.619 0.901 0.924 0.912 0.857

BayesNet 0.424 0.621 0.503 0.894 0.791 0.839 0.757

SMO 0.607 0.565 0.584 0.894 0.910 0.902 0.841

KStar 0.563 0.577 0.569 0.895 0.889 0.892 0.827

SVM 0.545 0.371 0.440 0.856 0.924 0.889 0.814

MAN C4.5 0.717 0.608 0.658 0.970 0.981 0.976 0.954

RandomForest 0.808 0.586 0.678 0.969 0.989 0.979 0.960

BayesNet 0.185 0.750 0.295 0.974 0.736 0.837 0.737

SMO 0.761 0.658 0.703 0.974 0.983 0.978 0.960

KStar 0.720 0.628 0.669 0.971 0.980 0.976 0.955

SVM 0.871 0.422 0.567 0.957 0.995 0.976 0.954

8

o

c

a

s

n

5

r

t

p

e

o

s

c

a

a

b

P

w

t

s

a

r

t

i

I

T

c

s

t

t

i

c

q

s

c

a

t

f

t
.3603e-08, and 1.2479e-04. That is, consider 0.005 as a threshold

f the significant difference, using SMOTE or not leads to signifi-

ant differences for all seven metrics.

Answer to RQ 2 . In our experiment, the SMOTE strategy

chieves the most stable results. The imbalanced data processing

trategies can obtain accurate prediction results, comparing with

o strategy.

.3.3. RQ3. Which features are more impactful on the prediction

esults?

In CraTer, we propose five groups of features from the stack

race and the source code. We explore which features are more im-

actful on the prediction results. We used Pearson correlation co-

fficient (Egghe and Leydesdorff, 2009; Zhang et al., 2018) to find

ut the correlation between a feature and the predicted class. Pear-

on correlation coefficient is one of commonly-used relativity coeffi-

ients, which measures the relationship between two random vari-

bles.

Let y and x denote the predicted class and one feature. Given

 dataset of m crashes, the value of Pearson correlation coefficient

etween the class y and the feature x is defined as follows,

 earson (x, y) =

∑ m

i =1 (x i − x)(y i − y) √ ∑ m

i =1 (x i − x) 2
√ ∑ m

i =1 (y i − y) 2
here x i and y i are the values on the i th crash of the feature x and

he class, x and y are the average values of x and y of m crashes, re-

pectively. Pearson correlation coefficient ranges from -1 to 1. The

bsolute value of the coefficient indicates the strength of the cor-

elation. The coefficient is 0 if the feature has no correlation with

he predicted label while 1 or -1 indicate that the feature has pos-

tively or negatively strongest correlation with the predicted label.

n our work, values of binary features, such as InTrace or Out-

race of the class label, are treated as 1 and -1 to adjust to the

alculation of correlation.

Table 7 lists the top-10 dominant features according to the ab-

olute values of Pearson correlation coefficients of features. The

op-10 dominant features of each project are determined based on

he average ranking list of 10 crash datasets, where the ranking list

n each dataset is calculated via the absolute value of the Pearson

orrelation coefficient.

As shown in Table 7 , two features, AT14 and AT16, have fre-

uent occurrences in the top-10 list and each feature appears for

ix times. Another feature AT06 also appears for five times. Re-

all the definition of features in Table 1 , these dominant features

re the number of for-each statements per line in the top func-

ion (AT06), the number of return statements per line in the top

unction (AT14), and the number of binary operators per line in

he top function (AT16). All these three features (AT06, AT14, and

98 Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104

Fig. 5. Prediction using four strategies of imbalanced data processing. For the sake of space, P, R, and F denote the precision, the recall, and the F-measure, respectively.

Table 7

Lists of top-10 dominant features for each project.

Rank COD ORM JSQ COL IO JSO MAN

1 CT21 AT16 AT16 ST01 CT13 AT06 AT16

2 AT06 AT14 AT14 AT06 AT06 AT15 AT14

3 CT13 CT21 AT03 AB06 AB06 ST07 AT01

4 CB21 AT12 CT04 AB04 CB13 AT16 AB13

5 CT22 AT06 AB10 AT03 AT16 AT14 CT04

6 CT14 CT23 CT10 CT13 AT14 CB08 CT05

7 CT23 CT19 AB09 AT16 AT04 CB22 CB06

8 CT10 CT08 CT09 CB13 AB04 CB19 AT03

9 CB06 CT07 CT23 AT14 CB22 CB10 CB22

10 CB02 CT22 CT11 AB02 CB04 CB23 CB13

T

t

o

t

s

w

s

8

t

e

s

S

a

0

s

i

u

m

l

c

w

b

t

p

(

s

a

t

2

c

t

m
AT16) strongly relate to the program control flow. Note that AT16

relates to both the control flow (e.g., a logic-and operator &&) or

the data flow (e.g., an algorithmic-add operator +). We can intu-

itively conclude that features related to the control flow can highly

influence the result of our predictive model.

We counted the number of occurrences of different groups of

features based on Table 7 : Fig. 6 (a) shows the absolute number of

each group while Fig. 6 (b) shows the ratio between the number

of features in the top-10 list (including duplicate features in differ-

ent projects) and the number of features defined in the group. For

instance, 1.500 of AT in Fig. 6 (b) indicates the ratio between the

number of recorded AT features in the list and the total number of

features, i.e., 24 / 16 = 1 . 500 .

As shown in Fig. 6 (a), features from AT group have the most oc-

currence (i.e., 24) for all features in the top-10 list. The other four

groups have the occurrences of 2 at least. As shown in Fig. 6 (b),

features from AT group have the highest ratio (i.e., 1.500) of all

features in the top-10 list; ratio of features from CT group is 0.913,

i.e., the second rank. The above occurrences and percentages re-

flect the importance of different groups of features: features in CT

and AT groups better impact the prediction than those in the other

groups.
We have also checked whether the top-10 dominant features in

able 7 can represent the whole set of 89 features. Table 8 shows

he comparison between the whole set of 89 features and a subset

f the top-10 dominant features. In this comparison, we present

wo groups of results for each project: one group uses the whole

et of 89 features based on the combination of C4.5 with SMOTE

hile the other uses the top-10 dominant features in Table 7 in-

tead.

As shown in Table 8 , the prediction with the whole set of

9 features achieves higher results in six out of seven projects

han that with the subset of the top-10 dominant features. One

xception project is Collections, the prediction with the sub-

et of the top-10 features performs slightly better. We followed

ection 5.3.2 to conduct the Wilcoxon signed-rank test. The results

re significantly different in two sets of features if we consider

.005 as the threshold of significance. However, we can also ob-

erve that several results are similar, especially the accuracy; that

s, in some case, there exists no practical difference whether we

se the feature selection technique or not. We can observe that in

ost projects, using the subset of top-10 dominant features may

ose several features, which can predict the residence of the faulty

ode.

To further study the impact of 89 features, we examined

hether the feature selection technique works for our approach

ased on our observation of the dominant features. Feature selec-

ion, also known as feature subset selection, aims to improve the

rediction results via removing redundant and irrelevant features

 Han et al., 2011). A feature selection technique can output a sub-

et of features of the original feature set. We used Chi-Square (χ2)

s our major feature selection method because it performs well in

he empirically evaluation (Guyon and Elisseeff, 2003; Xuan et al.,

017a). In addition, we also used Information Gain (Wang and Lo-

hovsky, 2004) and ReliefF (Kononenko, 1994) as another two fea-

ure selection methods.

Fig. 7 shows the empirical results of applying Chi-Square, Infor-

ation Gain, and ReliefF. Similar to the hypothesis test in RQ2, we

Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104 99

Fig. 6. Distribution of different groups of features in the top-10 list .

Table 8

Comparison between the whole set of 89 features and a subset of the top-10 dominant features on crashes from each project.

Project Features InTrace OutTrace Accuracy

Precision Recall F-measure Precision Recall F-measure

COD All 89 0.761 0.812 0.785 0.921 0.895 0.908 0.871

Top-10 0.571 0.733 0.642 0.877 0.774 0.822 0.762

ORM All 89 0.878 0.881 0.879 0.960 0.959 0.960 0.939

Top-10 0.624 0.662 0.642 0.885 0.867 0.876 0.816

JSQ All 89 0.831 0.685 0.750 0.968 0.985 0.976 0.957

Top-10 0.819 0.679 0.741 0.967 0.984 0.975 0.955

COL All 89 0.804 0.741 0.771 0.936 0.954 0.945 0.911

Top-10 0.811 0.752 0.780 0.939 0.955 0.947 0.914

IO All 89 0.813 0.768 0.789 0.937 0.951 0.944 0.911

Top-10 0.684 0.781 0.730 0.937 0.901 0.919 0.875

JSO All 89 0.643 0.660 0.650 0.916 0.909 0.912 0.860

Top-10 0.538 0.604 0.569 0.899 0.871 0.885 0.818

MAN All 89 0.717 0.608 0.658 0.970 0.981 0.976 0.954

Top-10 0.488 0.4 4 4 0.460 0.957 0.962 0.960 0.925

p -value 2.1095e-43 8.9694e-25 4.9942e-60 2.9540e-34 2.9722e-53 4.9942e-60 1.6165e-60

a

e

o

0

i

f

A

s

i

t

5

e

f

T

a

t

t

l

c

(

t

o

t

o

T

a

i

t

w

t

c

n

o

i

T

o
lso conducted the Wilcoxon signed-rank test to explore the influ-

nce between using a feature selection method (i.e., Chi-Square)

r not. The p -value of seven evaluation metrics are 0.1699, 0.6977,

.1061, 0.6998, 0.1361, 0.1061, and 0.1689, respectively. This result

ndicates that using feature selection cannot lead to significant dif-

erences, comparing with the prediction with no feature selection.

Answer to RQ 3 . According to Pearson correlation coefficient,

T06, AT14, and AT16 are most impactful on the prediction re-

ults among seven projects. Furthermore, the results obtained us-

ng three typical feature selection methods are not better than

hose without feature selection.

.3.4. RQ4. How efficient is our approach in the prediction?

We show the time cost and the manual effort to investigate the

fficiency of our approach.

Given a newly-submitted crash, CarTer first extracts 89 features

rom its stack trace and source code, and then predicts either In-

race or OutTrace by the built predictive model. Let t e denote the

verage time cost of feature extraction for one crash. Hence, the

ime cost of the prediction on a newly-submitted crash consists of

he time of its feature extraction t d e and the time of predicting its

abel t d p . In the experiment, the process of ten-fold cross validation
onsists of 10 rounds of training phases and deployment phases

see Section 3.2). In one training phase, let T t e and T t m

be the total

ime cost of feature extraction and model building, respectively; in

ne deployment phase, let T d e and T d p be the total time cost of fea-

ure extraction and prediction, respectively. Then the time cost of

ne round in ten-fold cross validation is as follows,

 = (T t e + T t m

) + (T d e + T d p) ,

nd the time cost of the prediction on one newly-submitted crash

s as follows,

 = t d e + t d p ,

here T is the average time cost of one round and t d is the average

ime cost of the prediction on a newly-submitted crash.

Table 9 present the average time cost of one round in ten-fold

ross validation and the average time cost of prediction on one

ewly-submitted crash. As mentioned in Section 5.1 , in each round

f ten-fold cross validation, we used 450 crashes in the train-

ng phase and 50 crashes in the deployment phase; all values in

able 9 are the average.

As shown in Table 9 , the time cost t d e of feature extraction for

ne crash varies in the range of 315 to 2509 milliseconds; the

100 Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104

Fig. 7. Results with three feature selection methods. For the sake of space, P, R, and F denote the precision, the recall, and the F-measure, respectively.

Table 9

Time cost in each round of CraTer (in millisecond).

Training phase Deployment phase Deployment phase

Project per round † per round † per crash ‡

T t e T t m T d e T d p t d e t d p

Codec 141,795 79.5 15,755 0.03 315 0.0 0 06

Ormlite-Core 222,525 43.3 24,725 0.02 495 0.0 0 04

JSqlParser 1,128,870 14.2 125,430 0.02 2509 0.0 0 04

Collections 460,260 37.6 51,140 0.02 1023 0.0 0 04

IO 186,030 38.2 20,670 0.04 413 0.0 0 08

Jsoup 175,815 36.2 19,535 0.03 391 0.0 0 06

Mango 250,830 12.5 27,870 0.02 557 0.0 0 04

Average 366,589 37.4 40,732 0.03 815 0.0 0 05

† The time cost of one training phase and one deployment phase of one round in

ten-fold cross validation. ‡ The time cost of one crash in the deployment phase.

Fig. 8. Example of a stack trace by a crashing fault in the project Jsoup. The faulty

code is at Frame 2.

s

f

C

w

o

t

u

a

a

t

c

t

d

E

a

i

1

a

t

s

E

time cost t d p of prediction for one crash is less than 1 millisecond.

The total time cost of a newly-submitted crash is 815 milliseconds.

Therefore, we consider this less than 1 second time per crash is

acceptable.

We estimated the manual effort in terms of lines of code to

better understand the benefit of our proposed approach. We de-

fine the following four kinds of effort: E A , E B , E C , and E D , each of

which calculates the Lines of Code (LoC) in different situations, re-

spectively,

E A - LoC when reviewing all functions that are recorded in the

stack trace.

E B - LoC when reviewing all functions that are recorded in the

stack trace from Frame 0 until the faulty code is found.

E C - LoC when reviewing all lines that are recorded in the stack

trace.

E D - LoC when reviewing all lines that are recorded in the stack

trace from Frame 0 until the faulty code is found.

Fig. 8 presents an example of a stack trace from the

project Jsoup. The crashing fault is at Line 19 of the con-
tructor ConstrainableInputStream() . There are three

unctions that are recorded in the stack trace: isTrue() ,
onstrainableInputStream() , and parseInputStream()
ith 4, 6, and 65 lines of code, respectively. In practice, a devel-

per usually reviews all functions that are recorded in the stack

race from Frame 0 until the faulty code is found; that is, the man-

al effort equals to E B .

For E A , we assume that a developer reviews all functions that

re recorded in the stack trace, i.e., E A = 4 + 6 + 65 = 75 . For E B , we

ssume that a developer reviews all functions that are recorded in

he stack trace from Frame 0 until the faulty code is found. In this

ase, E B = 4 + 3 = 7 because Line 19 is the third line in the func-

ion ConstrainableInputStream() . For E C , we assume that a

eveloper reviews all lines that are recorded in the stack trace, i.e.,

 C = 3 . For E D , we assume that a developer reviews all lines that

re recorded in the stack trace from Frame 0 until the faulty code

s found. E D = 2 , i.e., Line 35 in the file Validate.java and Line

9 in ConstrainableInputStream.java .
If a newly-submitted crash is predicted as InTrace by CraTer,

 developer only needs to focus on the specific lines in the stack

race, i.e. E D . Comparing with the manual effort E B in practice, the

aved effort is defined as follows,

 sa v ed =

E B − E D
E

× 100%
B

Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104 101

Table 10

Manual effort for each project (in LoC).

Project E A E B E C E D P saved

Codec 8,665.4 2,594.5 258.8 114.5 95.6%

Ormlite-Core 12,539.6 735.3 475.3 102.6 86.0%

JSqlParser 4,374.5 36.7 199.0 31.9 13.1%

Collections 2,697.6 574.5 115.9 72.9 87.2%

IO 1,913.9 538.5 128.8 80.8 85.0%

Jsoup 4,574.5 409.5 309.0 76.3 81.4%

Mango 1,060.1 39.8 117.7 21.4 46.2%

Average 5,117.9 704.1 229.2 71.5 70.6%

w

c

s

e

r

d

l

T

t

t

t

o

C

c

a

C

6

o

e

6

s

t

h

o

e

s

r

t

i

p

s

F

6

t

m

m

g

u

g

t

5

e

e

6

g

i

A

t

t

i

r

f

g

c

r

p

s

e

t

t

i

r

r

7

c

7

c

t

G

r

t

o

t

p

g

w

t

c

K

d

A

l

b

t

e

m

p

o

L

i

t
If a newly-submitted crash is predicted as OutTrace by CraTer,

e do not help a developer reduce any effort in manual crash lo-

alization. Then the developer has to review all functions in the

tack trace until the faulty line is found; this makes the manual

ffort by the developer equal to E B .

Table 10 shows all the manual effort s f or crashes that are cor-

ectly predicted as InTrace by CraTer. For crashes that are pre-

icted as OutTrace , we do not change the process of manual crash

ocalization; then the saved manual effort is zero. As shown in

able 10 , for Projects Codec, Collections, IO, Jsoup, and OrmLite,

he saved effort s in percent age are over 80%. For Project JSqlParser,

he saved effort in percentage is 13.1%; the major reason is that

he faulty code is near the top of the stack trace in many crashes

f JSqlParser. In average, for crashes that are predicted as InTrace ,

raTer can save 70.6% of manual effort s, comparing with manual

rash localization.

Answer to RQ 4 . CraTer is efficient. It can quickly predict for

 newly-submitted crash in average 815 milliseconds; meanwhile,

raTer can save 70% of manual effort s in average.

. Threats to validity

In this section, we present three major threats to the validity

f our work: the construct validity, the internal validity, and the

xternal validity.

.1. Construct validity

In the experiment, seven real-world projects are selected as

ubject projects, which are further seeded faults with program mu-

ation. A threat is that all seven projects are written in Java and we

ave not considered other programming languages, such as C/C++

r Python in our experiment. Such selection may hurt the gen-

rality of our experiment. Another construct validity is that our

elected subject projects are all built with Maven. 21 The configu-

ation with Maven may ease the complex process of feature ex-

raction; meanwhile, only handling Maven based projects may also

nvolve the bias of experiment construction. Projects in our ex-

eriment range from 14K to 61K lines of code. The generality of

maller or larger projects can be viewed as a threat to the validity.

urther experiments can be conducted to address this issue.

.2. Internal validity

In this work, we extracted 89 features from the stack trace and

he source code. The features are selected based on our program-

ing experience. It is possible that some other choices of features

ay better characterize the addressed prediction problem. The al-

orithms, such C4.5 and the SMOTE strategy, are empirically eval-

ated and shown to be effective. Further investigation of better al-

orithms could help to improve the prediction results. Considering
21 Maven, http://maven.apache.org/ .

t

m

l
he randomness in data preparation such as random selection of

00 crashes and evaluation such as ten-fold cross validation, there

xists another threat to the internal validity for the replication of

xperiments.

.3. External validity

Our experiments are conducted on the crashes, which are

enerated via seeded faults based on program mutation. Ex-

sting empirical studies by Namin and Kakarla (2011) and

li et al. (2009) have shown that there is no significant impact on

he results of fault localization when using the mutants to mimic

he real-world bugs. However, these seeded faults may still result

n the risk of unrepresentative crashes. The main reason is that

eal-world bugs are usually caused by multiple and complex logical

aults while crashes in our experiment are all caused by one sin-

le seeded fault. The steps of seeding faults to real-world projects

an be viewed as a trade-off between the requirements of solving

eal-world problems and the lack of available real-world crashes.

In machine learning, classifiers may yield different results de-

ending on the parameter settings; it is infeasible to check all pos-

ibilities of parameters. In our work, we tuned the classifier param-

ters based on the guide document of Weka. There exists a threat

hat a particular parameter setting may lead to a different result in

he comparison of classifiers. Meanwhile, crashes in our work are

nadequate to build an extremely precise classifier. Collecting more

eal-world crashes may lead to better explanation to our current

esult.

. Related work

We describe two categories of related work in this section, i.e.,

rash localization and crash reproduction.

.1. Crash localization

Crash localization aims to map a stack trace onto its root

ause; in practice, it aims to identify a faulty function that causes

he crash. As mentioned in Section 2.2 , Wu et al. (2014) and

ong et al. (2014) have proposed two automatic approaches to

ecover the links between the crashes and their root-cause func-

ions based on a recommendation list. To support the localization

f crashes, many software companies deploy crash reporting sys-

ems to gather user-submitted crashes and then extract a crash re-

ort for similar crashes. Kim et al. (2011) propose to build a crash

raph to cluster similar crashes and to reduce the cost of dealing

ith duplicate crashes. Dang et al. (2012) design a re-bucketing

echnique to enhance the existing crash clustering system in Mi-

rosoft to support the duplicate detection by refining clusters.

echagia et al. (2015) employ software telemetry data from An-

roid applications to study the association between crashes and

PI deficiencies.

Two related techniques in debugging are spectrum based fault

ocalization and information-retrieval based bug location. Spectrum

ased fault localization aims to find out the faulty code based on

he execution of given test cases (Jones and Harrold, 2005; Rui

t al., 2007; Lucia et al., 2014; Le et al., 2016). The spectrum is a

atrix of collected numbers of passing or failing test cases for each

rogram entity; all candidate program entities are ranked based

n the pre-designed likelihood metric. Recent work by Le and

o (2013) analyzes the empirical results of whether a fault local-

zation technique can correctly identify the root cause via a predic-

ive model with 50 extracted features; these features are expected

o potentially relate to the effectiveness of fault localization. Their

odel shows that it is feasible to predict the effectiveness of fault

ocalization. Information-retrieval based bug location aims to map a

http://maven.apache.org/

102 Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104

o

t

i

r

l

f

v

r

w

c

d

e

d

j

e

I

A

C

e

a

C

v

R

A

B

C

C

D

D

E

G

G

G

H

H

H

J

bug report onto its related source code file (Zhou et al., 2012; Xia

et al., 2014; Le et al., 2015). The bug report and the source code are

converted into the problem of information retrieval and the source

code file with high similarity is recommended to developers.

Jiang et al. (2012) have proposed an automatic approach to

identify the null-pointer exceptions based on the combination of

stack traces, the static slicing, and spectrum based fault localiza-

tion. Their task of identifying the null-pointer exceptions can be

viewed as a type of software crash in our work. However, their

work (Jiang et al., 2012) falls in the category of fault localization,

which can leverage the execution of pre-defined test cases to cap-

ture the program behavior; in the contrast, in our paper, test cases

are unavailable since only a stack trace exists in a submitted crash.

Different from fault localization or bug location, our work does

not have the assistance from the input of test cases or bug reports.

In the prediction on whether the crashing fault resides in the stack

trace, neither test cases nor bug reports are available. In this paper,

instead of directly mapping a crash to a function in crash localiza-

tion (Wu et al., 2014; Gong et al., 2014), we predict whether the

crashing code resides in the lines of the stack trace.

7.2. Crash reproduction

Crash reproduction is to automatically generate a test case to

trigger a given stack trace (Rößler et al., 2013; Chen and Kim,

2015). ReCore (Rößler et al., 2013) is a typical post-failure crash

reproduction technique. ReCore only uses the stack trace and the

core dump when a crash occurs. Star (Chen and Kim, 2015) and

MuCrash (Xuan et al., 2015) are two stack-trace-based approaches

for crash reproduction. Star utilizes the symbolic execution tech-

nique to identify the precondition of a crash while MuCrash ap-

plies the program mutation technique on existing test cases to trig-

ger a given crash. These two approaches can automate the process

of crash reproduction and reduce the manual effort, but both ap-

proaches are limited by the combination explosion problem.

A recent work, EvoCrash (Soltani et al., 2016; 2017) employs a

genetic algorithm to transform the test generation problem into a

search-based problem. During each evolution process of test cases,

the fitness function of EvoCrash can narrow down the distance be-

tween generated test cases and target test cases.

One of the most related work to our paper is by

Gu et al. (2016) . This work has modeled the difficulty of crash

reproduction with 23 features. The difficulty of crash reproduction

is heuristically defined and is evaluated on 45 crashes. In contrast

to that work, first, our paper is to predict the linkage between

the crashing fault and the stack trace; second, in our paper, five

groups of 89 features are extracted to characterize the behavior

of the stack trace and the source code; third, our paper conducts

detailed empirical evaluation on multiple sampling of crashes from

seven projects.

8. Conclusion and future work

To assist manual crash localization by developers, we propose

an automatic approach, namely CraTer, to predict crashing fault

residence; that is, predicting whether the crashing fault resides

in the stack trace or not. This approach can help developers fil-

ter out unnecessary statements and prioritize the debugging ef-

fort via scheduling crashes. In CraTer, we first extract features from

both source code and stack traces. Second, we build a stable and

effective model by combining a decision tree algorithm with the

SMOTE strategy to process the imbalanced distribution of training

data. Third, given a new crash, the trained model is used to predict

whether the crashing fault resides in the stack trace. Experiments

show that our approach is effective, com paring with other algo-

rithms and strategies under evaluation.
In future work, we plan to design and extract a large number

f features to enhance the prediction performance. We would like

o visualize the extracted features via syntax highlighting and an

nterface of pattern searching to help debuggers speed up the cur-

ent crash localization. Bug reports can be leveraged to assist crash

ocalization. We plan to enhance CraTer with the support of data

rom bug tracking systems, such as Bugzilla. This may help to re-

eal the nature of crashes. As mentioned in Section 4.1 , configu-

ation issues hurt the scale of the dataset under evaluation. Thus,

e plan to try new ways to automatically configure projects in lo-

al machines to enlarge potential datasets. A future goal is to con-

uct large datasets with real-world and large-scale projects and to

valuate the effectiveness and efficiency of our proposed approach.

To improve the performance of CraTer, we also plan to invite

evelopers to evaluate CraTer in daily development; developers can

udge the usability and reliability according to their knowledge and

xperience. Furthermore, it is useful to design a plug-in inside Java

DEs, e.g., Eclipse, to give direct recommendation to developers.

cknowledgements

The work is supported by the National Key R&D Program of

hina under Grant No. 2018YFB1003901, the National Natural Sci-

nce Foundation of China under Grant Nos. 61872273, 61502345,

nd 61572375 , the Young Elite Scientists Sponsorship Program by

AST under Grant No. 2015QNRC001 , and the Technological Inno-

ation Projects of Hubei Province under Grant No. 2017AAA125.

eferences

li, S., Andrews, J.H., Dhandapani, T., Wang, W., 2009. Evaluating the accuracy of
fault localization techniques. In: 24th IEEE/ACM International Conference on Au-

tomated Software Engineering, ASE 2009, Auckland, New Zealand, November
16–20, 2009, pp. 76–87. doi: 10.1109/ASE.2009.89 .

reiman, L. , Friedman, J.H. , Olshen, R.A. , Stone, C.J. , 1984. Classification and regres-

sion trees. Wadsworth Press .
hawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. SMOTE: Synthetic mi-

nority over-sampling technique. J. Artif. Intell. Res. (JAIR) 16, 321–357. doi: 10.
1613/jair.953 .

hen, N., Kim, S., 2015. STAR: Stack trace based automatic crash reproduction via
symbolic execution. IEEE Trans. Software Eng. 41 (2), 198–220. doi: 10.1109/TSE.

2014.2363469 .

ang, Y., Wu, R., Zhang, H., Zhang, D., Nobel, P., 2012. Rebucket: A method for clus-
tering duplicate crash reports based on call stack similarity. In: 34th Interna-

tional Conference on Software Engineering, ICSE 2012, June 2–9, 2012, Zurich,
Switzerland, pp. 1084–1093. doi: 10.1109/ICSE.2012.6227111 .

elahaye, M., du Bousquet, L., 2013. A comparison of mutation analysis tools for
java. In: 2013 13th International Conference on Quality Software, Najing, China,

July 29–30, 2013, pp. 187–195. doi: 10.1109/QSIC.2013.47 .

Egghe, L., Leydesdorff, L., 2009. The relation between pearson’s correlation coeffi-
cient r and salton’s cosine measure. JASIST 60 (5), 1027–1036. doi: 10.1002/asi.

21009 .
lkan, C. , 2001. The foundations of cost-sensitive learning. In: Proceedings of the

Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001,
Seattle, Washington, USA, August 4–10, 2001, pp. 973–978 .

Gong, L. , Zhang, H. , Seo, H. , Kim, S. , 2014. Locating crashing faults based on crash

stack traces. CoRR abs/1404.4100 .
opinath, R., Alipour, M.A., Ahmed, I., Jensen, C., Groce, A., 2016. On the limits of

mutation reduction strategies. In: Proceedings of the 38th International Con-
ference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14–22, 2016,

pp. 511–522. doi: 10.1145/2884781.2884787 .
u, Y., Xuan, J., Qian, T., 2016. Automatic reproducible crash detection. In: Inter-

national Conference on Software Analysis, Testing and Evolution, SATE 2016,

November 3–4, 2016, pp. 48–53. doi: 10.1109/SATE.2016.15 .
uyon, I. , Elisseeff, A. , 2003. An introduction to variable and feature selection. J.

Mach. Learn. Res. 3, 1157–1182 .
all, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., 2009.

The WEKA data mining software: an update. SIGKDD Explorations 11 (1), 10–
18. doi: 10.1145/1656274.1656278 .

an, J. , Kamber, M. , Pei, J. , 2011. Data mining: Concepts and techniques, 3rd edition.
Morgan Kaufmann .

e, H., Garcia, E.A., 2009. Learning from imbalanced data. IEEE Trans. Knowl. Data

Eng. 21 (9), 1263–1284. doi: 10.1109/TKDE.2008.239 .
iang, S., Li, W., Li, H., Zhang, Y., Zhang, H., Liu, Y., 2012. Fault localization for null

pointer exception based on stack trace and program slicing. In: 2012 12th Inter-
national Conference on Quality Software, Xi’an, Shaanxi, China, August 27–29,

2012, pp. 9–12. doi: 10.1109/QSIC.2012.36 .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100005232
https://doi.org/10.1109/ASE.2009.89
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0002
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/TSE.2014.2363469
https://doi.org/10.1109/ICSE.2012.6227111
https://doi.org/10.1109/QSIC.2013.47
https://doi.org/10.1002/asi.21009
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0009
https://doi.org/10.1145/2884781.2884787
https://doi.org/10.1109/SATE.2016.15
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0012
https://doi.org/10.1145/1656274.1656278
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0014
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/QSIC.2012.36

Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104 103

J

J

K

K

K

L

L

L

L

L

L

M

N

O

P

Q

Q

R

R

S

S

S

T

W

W

W

W

W

W

X

X

X

X

X

X

Z

Z

Z

Z

Y

v

S

c

p

J

C

T

N

s

t

H

P

p

U

i

p

c

a

i

L

w

c

ones, J.A., Harrold, M.J., 2005. Empirical evaluation of the tarantula automatic fault-
localization technique. In: 20th IEEE/ACM International Conference on Auto-

mated Software Engineering ASE 2005, November 7–11, 2005, Long Beach, CA,
USA, pp. 273–282. doi: 10.1145/1101908.1101949 .

ust, R., Jalali, D., Ernst, M.D., 2014. Defects4j: a database of existing faults to enable
controlled testing studies for java programs. In: International Symposium on

Software Testing and Analysis, ISSTA 2014, San Jose, CA, USA - July 21, - 26,
2014, pp. 437–440. doi: 10.1145/2610384.2628055 .

echagia, M., Mitropoulos, D., Spinellis, D., 2015. Charting the API minefield us-

ing software telemetry data. Emp. Softw. Eng. 20 (6), 1785–1830. doi: 10.1007/
s10664- 014- 9343- 7 .

im, S., Zimmermann, T., Nagappan, N., 2011. Crash graphs: An aggregated view
of multiple crashes to improve crash triage. In: Proceedings of the 2011

IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2011, Hong Kong, China, June 27–30 2011, pp. 4 86–4 93. doi: 10.1109/DSN.2011.

5958261 .

ononenko, I., 1994. Estimating attributes: Analysis and extensions of RELIEF. In:
European Conference on Machine Learning, ECML 1994, Catania, Italy, April 6–

8, 1994, pp. 171–182. doi: 10.1007/3- 540- 57868- 4 _ 57 .
e, T.B., Lo, D., 2013. Will fault localization work for these failures? an automated

approach to predict effectiveness of fault localization tools. In: 2013 IEEE In-
ternational Conference on Software Maintenance, Eindhoven, The Netherlands,

September 22–28, 2013, pp. 310–319. doi: 10.1109/ICSM.2013.42 .

e, T.B., Lo, D., Le Goues, C., Grunske, L., 2016. A learning-to-rank based fault lo-
calization approach using likely invariants. In: Proceedings of the 25th Interna-

tional Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,
Germany, July 18–20, 2016, pp. 177–188. doi: 10.1145/2931037.2931049 .

e, T.B., Oentaryo, R.J., Lo, D., 2015. Information retrieval and spectrum based bug
localization: better together. In: Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30

- September 4, 2015, pp. 579–590. doi: 10.1145/2786805.2786880 .
i, D. , Li, L. , Kim, D. , Bissyandé, T.F. , Lo, D. , Traon, Y.L. , 2016. Watch out for this

commit! a study of influential software changes. CoRR abs/1606.03266 .
i, Y. , Ying, S. , Jia, X. , Xu, Y. , Zhao, L. , Cheng, G. , Wang, B. , Xuan, J. , 2018. EH-recom-

mender: Recommending exception handling strategies based on program con-
text. In: 23rd IEEE International Conference on Engineering of Complex Com-

puter Systems, ICECCS 2018, Melbourne, Austrilia, December 12–14, 2018, to ap-

pear .
ucia, Lo, D., Xia, X., 2014. Fusion fault localizers. In: ACM/IEEE International Con-

ference on Automated Software Engineering, ASE 2014, Vasteras, Sweden -
September 15, - 19, 2014, pp. 127–138. doi: 10.1145/2642937.2642983 .

oon, S., Kim, Y., Kim, M., Yoo, S., 2014. Ask the mutants: Mutating faulty pro-
grams for fault localization. In: Seventh IEEE International Conference on Soft-

ware Testing, Verification and Validation, ICST 2014, March 31 2014-April 4,

2014, Cleveland, Ohio, USA, pp. 153–162. doi: 10.1109/ICST.2014.28 .
amin, A.S., Kakarla, S., 2011. The use of mutation in testing experiments and its

sensitivity to external threats. In: Proceedings of the 20th International Sympo-
sium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July

17–21, 2011, pp. 342–352. doi: 10.1145/2001420.2001461 .
liveira, J., Borges, D., Silva, T., Cacho, N., Castor, F., 2018. Do android developers ne-

glect error handling? a maintenance-centric study on the relationship between
android abstractions and uncaught exceptions. Journal of Systems and Software

136, 1–18. doi: 10.1016/j.jss.2017.10.032 .

awlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L., 2016. SPOON:
A library for implementing analyses and transformations of java source code.

Softw. Pract. Exper. 46 (9), 1155–1179. doi: 10.1002/spe.2346 .
iu, D., Li, B., Leung, H., 2016. Understanding the API usage in java. Inform. Softw.

Technol. 73, 81–100. doi: 10.1016/j.infsof.2016.01.011 .
uinlan, J.R. , 1993. C4.5: Programs for machine learning. Morgan Kaufmann .

ößler, J., Zeller, A., Fraser, G., Zamfir, C., Candea, G., 2013. Reconstructing core

dumps. In: Sixth IEEE International Conference on Software Testing, Verifica-
tion and Validation, ICST 2013, Luxembourg, Luxembourg, March 18–22, 2013,

pp. 114–123. doi: 10.1109/ICST.2013.18 .
ui, A. , Zoeteweij, P. , Gemund, A.J.C.V. , 2007. On the accuracy of spectrum-based

fault localization. In: Testing: Academic and Industrial Conference Practice and
Research Techniques - Mutation, 2007. Taicpart-Mutation, pp. 89–98 .

chröter, A., Bettenburg, N., Premraj, R., 2010. Do stack traces help developers fix

bugs? In: Proceedings of the 7th International Working Conference on Min-
ing Software Repositories, MSR 2010 (Co-located with ICSE), Cape Town, South

Africa, May 2–3, 2010, Proceedings, pp. 118–121. doi: 10.1109/MSR.2010.5463280 .
oltani, M., Panichella, A., van Deursen, A., 2016. Evolutionary testing for crash re-

production. In: Proceedings of the 9th International Workshop on Search-Based
Software Testing, SBST@ICSE 2016, Austin, Texas, USA, May 14–22, 2016, pp. 1–

4. doi: 10.1145/2897010.2897015 .

oltani, M., Panichella, A., van Deursen, A., 2017. A guided genetic algorithm for au-
tomated crash reproduction. In: Proceedings of the 39th International Confer-

ence on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20–28,
2017, pp. 209–220. doi: 10.1109/ICSE.2017.27 .

heisen, C., Herzig, K., Morrison, P., Murphy, B., Williams, L.A., 2015. Approximating
attack surfaces with stack traces. In: 37th IEEE/ACM International Conference

on Software Engineering, ICSE 2015, Florence, Italy, May 16–24, 2015, Volume 2,

pp. 199–208. doi: 10.1109/ICSE.2015.148 .
ang, G., Lochovsky, F.H., 2004. Feature selection with conditional mutual informa-

tion maximin in text categorization. In: Proceedings of the 2004 ACM CIKM In-
ternational Conference on Information and Knowledge Management, Washing-

ton, DC, USA, November 8–13, 2004, pp. 342–349. doi: 10.1145/1031171.1031241 .
ang, S., Lo, D., Vasilescu, B., Serebrenik, A., 2014. Entagrec: An enhanced tag
recommendation system for software information sites. In: 30th IEEE Interna-

tional Conference on Software Maintenance and Evolution, Victoria, BC, Canada,
September 29, - October 3, 2014, pp. 291–300. doi: 10.1109/ICSME.2014.51 .

ohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., 2012. Experimentation
in software engineering. Springer doi: 10.1007/978- 3- 642- 29044- 2 .

ong, C., Xiong, Y., Zhang, H., Hao, D., Zhang, L., Mei, H., 2014. Boosting bug-report-
oriented fault localization with segmentation and stack-trace analysis. In: 30th

IEEE International Conference on Software Maintenance and Evolution, Victoria,

BC, Canada, September 29, - October 3, 2014, pp. 181–190. doi: 10.1109/ICSME.
2014.40 .

u, R., Xiao, X., Cheung, S., Zhang, H., Zhang, C., 2016. Casper: an efficient approach
to call trace collection. In: Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20, - 22, 2016, pp. 678–690. doi: 10.1145/2837614.

2837619 .

u, R., Zhang, H., Cheung, S., Kim, S., 2014. Crashlocator: locating crashing faults
based on crash stacks. In: International Symposium on Software Testing and

Analysis, ISSTA 2014, San Jose, CA, USA - July 21, - 26, 2014, pp. 204–214. doi: 10.
1145/2610384.2610386 .

ia, X., Lo, D., Shihab, E., Wang, X., Zhou, B., 2015. Automatic, high accuracy pre-
diction of reopened bugs. Autom. Softw. Eng. 22 (1), 75–109. doi: 10.1007/

s10515- 014- 0162- 2 .

ia, X., Lo, D., Wang, X., Zhang, C., Wang, X., 2014. Cross-language bug localization.
In: 22nd International Conference on Program Comprehension, ICPC 2014, Hy-

derabad, India, June 2–3, 2014, pp. 275–278. doi: 10.1145/2597008.2597788 .
uan, J., Cornu, B., Martinez, M., Baudry, B., Seinturier, L., Monperrus, M., 2016. B-

Refactoring: automatic test code refactoring to improve dynamic analysis. In-
form. Softw. Technol. 76, 65–80. doi: 10.1016/j.infsof.2016.04.016 .

uan, J. , Jiang, H. , Zhang, H. , Ren, Z. , 2017. Developer recommendation on bug com-

menting: a ranking approach for the developer crowd. SCIENCE CHINA Inform.
Sci. 60 (7), 072105:1–072105:18 .

uan, J., Martinez, M., Demarco, F., Clement, M., Marcote, S.R.L., Durieux, T.,
Berre, D.L., Monperrus, M., 2017. Nopol: automatic repair of conditional state-

ment bugs in java programs. IEEE Trans. Softw. Eng. 43 (1), 34–55. doi: 10.1109/
TSE.2016.2560811 .

uan, J., Xie, X., Monperrus, M., 2015. Crash reproduction via test case mutation:

let existing test cases help. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30

- September 4, 2015, pp. 910–913. doi: 10.1145/2786805.2803206 .
hang, J., Wang, Z., Zhang, L., Hao, D., Zang, L., Cheng, S., Zhang, L., 2016. Predictive

mutation testing. In: Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18–20, 2016,

pp. 342–353. doi: 10.1145/2931037.2931038 .

hang, L., Zhang, L., Khurshid, S., 2013. Injecting mechanical faults to localize de-
veloper faults for evolving software. In: Proceedings of the 2013 ACM SIGPLAN

International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October

26–31, 2013, pp. 765–784. doi: 10.1145/2509136.2509551 .
hang, X. , Chen, Y. , Gu, Y. , Zou, W. , Xie, X. , Jia, X. , Xuan, J. , 2018. How do multi-

ple pull requests change the same code: A study of competing pull requests in
GitHub. In: 34th IEEE International Conference on Software Maintenance and

Evolution, ICSME 2018, Madrid, Spain, September 23–29, 2018, to appear .

hou, J., Zhang, H., Lo, D., 2012. Where should the bugs be fixed? more accurate in-
formation retrieval-based bug localization based on bug reports. In: 34th Inter-

national Conference on Software Engineering, ICSE 2012, June 2–9, 2012, Zurich,
Switzerland, pp. 14–24. doi: 10.1109/ICSE.2012.6227210 .

ongfeng Gu is a PhD candidate at the School of Computer Science, Wuhan Uni-

ersity, China. He received the BSc degree in 2015 from the School of Computer
cience and Information Engineering, Hubei University. His research interests in-

lude software testing and debugging, mining software repositories, and software
erformance prediction.

ifeng Xuan is a professor at the School of Computer Science, Wuhan University,
hina. He received the BSc degree and the PhD degree from Dalian University of

echnology, China. He was previously a postdoctoral researcher at the INRIA Lille

ord Europe, France. His research interests include software testing and debugging,
oftware data analysis, and search based software engineering. He is a member of

he ACM, IEEE, and CCF.

ongyu Zhang is an associate professor with The University of Newcastle, Australia.

reviously, he was a lead researcher at Microsoft Research Asia and an associate
rofessor at Tsinghua University, China. He received his PhD degree from National

niversity of Singapore in 2003. His research is in the area of Software Engineering,

n particular, software analytics, testing, maintenance, metrics, and reuse. He has
ublished more than 120 research papers in reputable international journals and

onferences. He received two ACM Distinguished Paper awards. He has also served
s a program committee member for many software engineering conferences. More

nformation about him can be found at: https://sites.google.com/site/hongyujohn/ .

anxin Zhang received the BSc degree in 2018 from Wuhan University, China. He
ill start his master study in Carnegie Mellon University. His research interests in-

lude software testing and debugging.

https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1007/s10664-014-9343-7
https://doi.org/10.1109/DSN.2011.5958261
https://doi.org/10.1007/3-540-57868-4_57
https://doi.org/10.1109/ICSM.2013.42
https://doi.org/10.1145/2931037.2931049
https://doi.org/10.1145/2786805.2786880
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0026
https://doi.org/10.1145/2642937.2642983
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1145/2001420.2001461
https://doi.org/10.1016/j.jss.2017.10.032
https://doi.org/10.1002/spe.2346
https://doi.org/10.1016/j.infsof.2016.01.011
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0033
https://doi.org/10.1109/ICST.2013.18
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0035
https://doi.org/10.1109/MSR.2010.5463280
https://doi.org/10.1145/2897010.2897015
https://doi.org/10.1109/ICSE.2017.27
https://doi.org/10.1109/ICSE.2015.148
https://doi.org/10.1145/1031171.1031241
https://doi.org/10.1109/ICSME.2014.51
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/ICSME.2014.40
https://doi.org/10.1145/2837614.2837619
https://doi.org/10.1145/2610384.2610386
https://doi.org/10.1007/s10515-014-0162-2
https://doi.org/10.1145/2597008.2597788
https://doi.org/10.1016/j.infsof.2016.04.016
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0049
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1145/2786805.2803206
https://doi.org/10.1145/2931037.2931038
https://doi.org/10.1145/2509136.2509551
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30240-1/sbref0054
https://doi.org/10.1109/ICSE.2012.6227210
https://sites.google.com/site/hongyujohn/

104 Y. Gu, J. Xuan and H. Zhang et al. / The Journal of Systems and Software 148 (2019) 88–104

s

s

T

s

C

p

C

Qingna Fan received the BSc degree in software engineering and the MSc degree
in computer science and technology, from Dalian University of Technology, China.

She was an automation engineer in Intel Semiconductor Dalian Ltd and an AI re-
searcher in HY Cross-Domain. Her research interests include artificial intelligence

and software optimization.

Xiaoyuan Xie received the BSc and MPhil degrees in computer science from South-
east University, China in 2005 and 2007, respectively, and received the PhD degree

in Computer Science from Swinburne University of Technology, Australia in 2012.
She is currently a professor at the School of Computer Science, Wuhan Univer-
ity, China. Her research interests include software analysis, testing, debugging, and
earch-based software engineering.

ieyun Qian received the PhD degree in computer science from Huazhong Univer-
ity of Science and Technology in 2006. She is a professor at Wuhan University,

hina. Her research interests include web mining, data management, etc. She has
ublished over 40 papers on leading journals and conferences like ACL, EMNLP,

OLING, SIGIR, CIKM, and INS. She is a member of ACL, ACM, IEEE, and CCF.

	Does the fault reside in a stack trace? Assisting crash localization by predicting crashing fault residence
	1 Introduction
	2 Background
	2.1 Crashes and stack traces
	2.2 Crash localization

	3 Proposed approach: CraTer
	3.1 Class labeling
	3.2 Overview
	3.2.1 Training phase
	3.2.2 Deployment phase

	3.3 Feature extraction
	3.4 Learning algorithms

	4 Experimental setup
	4.1 Data preparation
	4.1.1 Seeding faults with program mutation
	4.1.2 Filtering out mutants without crashes
	4.1.3 Randomly selecting crashes

	4.2 Implementation
	4.2.1 Program mutation
	4.2.2 Feature extraction
	4.2.3 Machine learning

	5 Experimental results
	5.1 Evaluation metrics
	5.2 Research question
	5.3 Results
	5.3.1 RQ1. How effective is our approach in predicting whether a crashing fault resides in stack traces or not?
	5.3.2 RQ2. Can imbalanced data processing strategies improve the prediction results?
	5.3.3 RQ3. Which features are more impactful on the prediction results?
	5.3.4 RQ4. How efficient is our approach in the prediction?

	6 Threats to validity
	6.1 Construct validity
	6.2 Internal validity
	6.3 External validity

	7 Related work
	7.1 Crash localization
	7.2 Crash reproduction

	8 Conclusion and future work
	Acknowledgements
	References

