5

Mining the Use of Higher-Order Functions:
An Exploratory Study on Scala Programs

Yisen Xu', Fan Wu?, Xiangyang Jia!, Lingbo Li?, and Jifeng Xuan'*

! Wuhan University, China {xuyisen, jxy, jxuan}@whu.edu.cn
2 Turing Intelligence Technology Limited, UK {fan, lingbo}@turintech.ai

Abstract. A higher-order function takes one or more functions as inputs
or outputs to support the generality of function definitions. In modern
programming languages, higher-order functions are designed as a feature
to enhance the usability and scalability. Abstracting higher-order func-
tions from existing functions decreases the number of similar functions
and improves the code reuse. However, due to the complexity, defining
and calling higher-order functions are not widely used in practice. In
this paper, we investigate the use of higher-order functions in Scala pro-
grams. We collected 20 Scala projects from GitHub with the most stars
and conducted an exploratory study via answering five research questions
of using higher-order functions, including the data scale, the definitions
and calls, the overlap with lambda expressions, the developer contribu-
tion, and the factor that affects the function calls. Our study mainly
shows five empirical results about the common use of higher-order func-
tions in Scala programs: higher-order functions are not widely-used in
Scala programs; most of higher-order functions are defined and called by
the same developers; there exists a small overlap between calling higher-
order functions and calling lambda expressions; similar to the practice
in many fields, top 20% of developers have contributed 76% of defini-
tions and 78% of calls of higher-order functions; and the number of calls
of higher-order functions correlates most with the number of executable
lines of code and the code complexity. This study can be viewed as a
preliminary result to understand the use of higher-order functions and
to trigger further investigation in Scala programs.

Keywords: Scala programs - Higher-order functions - GitHub - Ex-
ploratory study - Correlation analysis - Code reuse

1 Introduction

A higher-order function is a function that takes one or more functions as pa-
rameters or returns a function as a result. The concept of higher-order functions
is derived from mathematics and can be intuitively considered as a function of
functions. Using a higher-order function can increase the generality of source
code and reduce the redundancy by discarding functions that share the same

* Corresponding author: Jifeng Xuan

10

15

20

25

30

35

40

45

2 Y. Xu et al.

functionality without using the same types of parameters. Abstracting higher-
order functions from existing functions can be further leveraged to support au-
tomated code reuse and code generation via reduce the search space of potential
functions.

Many program languages support programming with higher-order functions,
e.g., C++ 11, Java 1.8, Python, and Scala. Using higher-order functions eases
the design and the implementation of programs. However, defining and calling
a higher-order function is complex since functions are introduced as parameters
or returned results. Such complexity hurts the possibility of widely using higher-
order functions.

Developers employ higher-order functions to enhance the design of source
code in following ways. First, common patterns are encapsulated into higher-
order functions to improve reusability in source code. The design of higher-
order functions is the abstraction of common programming patterns by taking
functions as the input or the output [27]. Second, higher-order functions can
be leveraged to implement polymorphism in source code. Polymorphism is the
ability of the same behavior to have many different manifestations or forms
[6]. For instance, the mapping function of a collection in Scala programs, such
as Array.map(), is a higher-order function, which supports polymorphism by
receiving different functions as parametersﬂ Third, for complex calculation like
high-precision control systems, developers can use higher-order functions to keep
the source code of calculation simple and clear. For example, the tensor data with
any non-hierarchical storage format and arbitrary number of dimensions can be
handled by the recursive multi-index algorithms implemented in higher-order
functions [4].

The direct support of higher-order functions is one of the important features
of the Scala language. As an emerging object-oriented programming language,
Scala was initially proposed to address the design drawbacks of the Java lan-
guage. The design of Scala contains the implementation of generics, the forced
use of object-oriented programming, and the implementation of limited sup-
port for component abstraction and composition [II]. To attract developers
using existing programing languages like Java and C#, Scala has been de-
signed to provide the support of type systems and the compatibility of func-
tional programming and object-oriented programming [23]. Such design makes
the Scala language be widely used in many development scenarios, e.g., the rapid
web development and the construction of distributed systems. For instance,
Nystrom [22] has presented a Scala framework for experimenting with super-
compilation techniques; Kroll et al. [I3] have proposed the Scala platform that
conducts a straightforward and simplified translation from a formal specification
to source code.

How do developers use higher-order functions in Scala programs? In this
paper, we conducted an exploratory study on the use of higher-order functions in
20 Scala projects with the most stars in GitHub. We leverage the static analysis

3 Array.map() in Scala, http://www.scala-lang.org/api/2.12.8/scala/Array.
html#map [B] (f:A=>B) :Array [B]|

http://www.scala-lang.org/api/2.12.8/scala/Array.html#map[B](f:A=>B):Array[B]
http://www.scala-lang.org/api/2.12.8/scala/Array.html#map[B](f:A=>B):Array[B]

50

55

60

65

70

75

80

85

90

Mining the Use of Higher-Order Functions 3

to explore the definitions and calls of higher-order functions by developers and
answered five research questions,

— RQ1. How many higher-order functions exist in Scala projects? We
give a basic statistics on the higher-order functions in 20 Scala projects and
show the existence of higher-order functions. The empirical result shows that
higher-order functions are not widely-used in Scala programs. Meanwhile,
most of higher-order functions are defined in a simple way, but there indeed
exist complex definitions.

— RQ2. How are higher-order functions defined and called? We briefly
categorize the definitions of higher-order functions according to inputing
or outputting functions. Most of definitions of higher-order functions only
takes functions as input without functions as output; most of higher-order
functions are called by the same developers who have defined the functions.

— RQ3. How much is the overlap of calling higher-order functions
and calling lambda expressions? We count the number of calling higher-
order functions and calling lambda expressions to reveal their difference in
practice. The result shows that there exists a small overlap between calling
higher-order functions and calling lambda expressions; that is developers
treat higher-order functions and lambda expressions in a different way.

— RQ4. How do developers contribute to write higher-order func-
tions? We analyze the number of higher-order functions defined and called
by each developer. Similar to the practice in many fields, we find out that top
20% of developers have contributed 76.15% function definitions and 78.06%
calls of higher-order functions.

— RQ5. Which factor affects the calls of higher-order functions? We
further analyze the factors that affect the calling of higher-order functions.
We mainly examine three measures, i.e., the LoC, the complexity, and the
warnings in the code style. The Spearman’s rank correlation coefficient indi-
cates that the number of calls of higher-order functions correlates with the
number of executable lines of code and the Cyclomatic complexity.

This paper makes the following major contributions:

1. We mined 20 Scala projects with the most stars in GitHub and collected
5494 higher-order functions which are contributed by 396 developers.

2. We designed an exploratory study on using higher-order functions via
answering five research questions, including the data scale, the definitions and
calls, the overlap with lambda expressions, the developer contribution, and the
factor that affects the function calls.

3. We empirically investigate the use of higher-order functions in Scala pro-
grams. We found that developers tend to define simple higher-order functions;
the LoC and the code complexity correlates most with the number of calls of
higher-order functions.

The rest of this paper is organized as follows. Section [2]shows the background
and motivation of studying higher-order functions. Section [3| presents the study
setup, including five research questions and the data preparation. Section [4] de-

95

100

105

110

115

120

125

130

4 Y. Xu et al.

scribes the results of our exploratory study. Section [5| discusses the threats to
the validity. Section [0] lists the related work and Section [7] concludes.

2 Background and Motivation

Scala is a multi-paradigm programming language that provides the support of
functional programming and a strong static type system [23]. Scala, like Java,
is object-oriented and the source code of Scala is designed to be compiled into
Java bytecode. This enables the compiled Scala code to be directly executed
on the Java virtual machine. Besides the object-oriented features of Java, Scala
shares many features of functional programming languages with Standard ML
and Haskell, including currying, type inference, and immutability. A higher-
order function, a typical feature of functional languages, makes the Scala code
succinct. Using higher-order functions in Scala can improve the abstraction and
simplification of function design, which is not originally supported in J avaE|

A function plays an important role in Scala. Calling a function is similar to
using a variable or an object. A higher-order function takes functions as input
or returns a function as output. The input or output function can be any func-
tion, including higher-order functions. If a function serves as input, it abstracts
the common patterns of potential parameters of the higher-order function; if
a function serves as output, it increases the diversity of the returned results.
Meanwhile, a higher-order function can have both functions as parameters and
functions as returned results. The flexible use of functions in Scala can hurt the
readability [29]. For instance, if a higher-order function returns a function, the
type of the returned function can be omitted from the definition of higher-order
function.

Fig.[T]shows an excerpt of a real-world higher-order function readModifiers()
in Project 1ampepf1/dottyE| The higher-order function readModifiers(), lo-
cating in dotty.tools.dotc.core.tasty.TreeUnpickler, is designed to dese-
rialize several modifiers of an Abstract Syntax Tree (AST) into a triplet, which
contains of a set of flags, a list of annotations, and a boundary symbol. A modi-
fier of an AST is a qualifier for the access, such as private or protected for a
variable; a boundary symbol is the scope of the accessible variable, e.g., a package
name or a class name of the variable. A flag is a value of a long integer that
reflects a particular modifier; then the variable flags at Line 8 indicates all the
modifiers of an AST.

The definition of this higher-order function contains five input parameters

and a return type. Five parameters are end, readAnnot, readWithin, defaultWithin,

and ctx, respectively. Among these five parameters, two parameters end at Line
2 and defaultWithin at Line 4 are objects of Class Addr and Class WithinType,
respectively; another two parameters readAnnot at Line 3 and readWithin
at Line 4 are function parameters: the function of readAnnot: Context =>

Symbol => AnnotType and the function of readWithin: Context => WithinType;

4 Java supports higher-order functions since its Version 8.0 in 2014.
® Project dotty, http://github.com/lampepfl/dotty.

http://github.com/lampepfl/dotty

135

140

Mining the Use of Higher-Order Functions 5

def readModifiers|WithinType, AnnotType]|

(end: Addr, // Parameter 1
readAnnot: Context => Symbol => AnnotType,// Parameter 2: function
readWithin: Context => WithinType, // Parameter 3: function
defaultWithin: WithinType) // Parameter 4

(implicit ctx: Context): // Parameter 5

(FlagSet, List[Symbol=>>AnnotType|, WithinType)={ // Return type
var flags: FlagSet = EmptyFlags
var annotFns: List[Symbol => AnnotType| = Nil
var privateWithin = defaultWithin
while (currentAddr.index != end.index) {
def addFlag(flag: FlagSet) = {
flags |= flag
readByte()

nextByte match {
case PRIVATE => addFlag(Private)

case PRIVATEqualified =>
readByte()
privateWithin = read Within(ctx)
case PROTECTEDqualified =>
addFlag(Protected)
privateWithin = read Within(ctx)
case ANNOTATION =>
annotFns = readAnnot(ctx) :: annotFns
case tag =>
assert(false, s"illegal_modifier_tag_$tag_at_$currentAddr,_ end_=_%$end")
}

(flags, annotFns.reverse, privateWithin) // Return statement

Fig.1. Excerpt of a real-world higher-order function readModifiers() from Class
dotty.tools.dotc.core.tasty.TreeUnpickler in Project lampepfl/dotty. The defi-
nition of this function is to read a modifier list into a triplet of flags, annotations, and
a boundary symbol.

the last parameter ctx at Line 6 belongs to the function currying that trans-
forms a function with multiple parameters into a sequence of functions, where the
implicit keyword indicates that the parameter is optionalﬂ As shown in Fig.
the second parameter readAnnot at Line 3 of the function readModifiers()
is a higher-order function, which receives a Context object as input and re-
turns an anonymous function Symbol => AnnotType and the function Symbol
=> AnnotType takes a Symbol object as a parameter and returns an AnnotType

5 Scala currying, http://docs.scala-lang.org/tour/currying.html,

http://docs.scala-lang.org/tour/currying.html

145

150

155

160

165

170

175

6 Y. Xu et al.

object. This parameter is called at Line 26. The third parameter readWithin
at Line 4 is a first-order function, which receives a Context object as input and
returns a WithinType object. This parameter is called at Line 21 and Line 24.

The return type of the function readModifiers() at Line 7 is a triplet of
flags, annotations and a boundary symbol. In the return type, the second return
value is a list of functions; that is, List [Symbol => AnnotType] denotes a list of
functions, each of which takes a Symbol object as input and returns an AnnotType
object as output. The return statement of the function readModifiers() locates
at Line 31, which returns an instance of the above return type at Line 7.

Motivation. Higher-order functions are widely used in the development of
many applications [355)22]. However, there is no prior study that investigates
the use of higher-order functions. For instance, in a mature project, how many
functions belong to higher-order functions? How many times is a higher-order
function called? Who has defined or called the higher-order function? Which fac-
tor impacts the number of calls? In this paper, we extracted data of 20 popular
Scala projects from GitHub and conducted an exploratory study on understand-
ing the use of higher-order functions in Scala programs.

3 Study Setup

In this section, we first present the data preparation of our study and then
describe the design of five research questions.

3.1 Data Preparation

Our study aims to understand the use of higher-order functions in Scala pro-
grams. We mined 20 Scala projects and extracted data for further analysis,
including function definitions, calls, developers who have written the functions,
and the function complexity[] We employed the static analysis tool SemanticDB
to extract semantic structures, such as types and function signatures. Seman-
ticDB is a library suite for program analysis of Scala source codeﬁ The main
steps of data preparation are listed as follows.

Project selection. We sorted all Scala projects in GitHub according to the
starsﬂ A project with many stars indicates that the project is identified by de-
velopers because of the usage and the quality. Then we selected top projects with
the most stars. Applying SemanticDB to a project requires the compatible con-
figuration of the project. Thus, we skipped the projects that cannot be parsed by
SemanticDB and selected the other top 20 projects for the experiment. In detail,
seven projects were skipped: since SemanticDB can only support the static anal-
ysis of Scala 2.11 or Scala 2.12, five projects that implemented in Scala 2.10 were

" The collected data in this study are publicly available, http://cstar.whu.edu.cn/
p/scalahof/|

® SemanticDB, http://scalameta.org/docs/semanticdb/guide.html.

9 Scala projects with stars, http://github.com/search?1=Scalako=desc&q=scalak
s=stars&type=Repositories.

http://cstar.whu.edu.cn/p/scalahof/
http://cstar.whu.edu.cn/p/scalahof/
http://scalameta.org/docs/semanticdb/guide.html
http://github.com/search?l=Scala&o=desc&q=scala&s=stars&type=Repositories
http://github.com/search?l=Scala&o=desc&q=scala&s=stars&type=Repositories

180

185

190

195

Mining the Use of Higher-Order Functions 7

Table 1. Summary of 20 Scala projects in GitHub in the study. For the sake of space,
each project will be denoted by its abbreviation in following sections.

‘ Project ‘ Abbr. ‘#Star‘ LoC‘Project description ‘

scala/scala scala 11.4k| 143.6k|The Scala programming language
playframework /playframework |framework| 11.0k| 41.5k|A web framework for building scalable applica-
tions with Java and Scala

gitbucket/gitbucket gitbucket | 7.6k| 19.1k|A Git platform powered by Scala
twitter /finagle finagle 7.0k| 63.0k|An extensible RPC system for the Java JVM
yahoo /kafka-manager katka 6.9k| 10.5k|A tool for managing Apache KafKa
ornicar/lila lila 5.2k| 70.3k|A free server for the online chess game
rtyley /bfg-repo-cleaner bfg 5.0k 1.5k|A simple and fast tool for cleansing bad data out
of Git repository
gatling/gatling gatling 4.2k| 25.6k|A highly capable load testing tool
scalaz/scalaz scalaz 4.1k| 35.4k|A Scala library for functional programming

apache/incubator-openwhisk |openwhisk| 3.9k| 18.7k|A cloud-first distributed event-based program-
ming service

sbt/sbt sbt 3.8k| 34.9k|A build tool for Scala, Java, and other languages
lampepfl /dotty dotty 3.3k| 387.1k|A Scala compiler
twitter /scalding scalding | 3.1k| 29.6k|A Scala API for a Java tool named cascading
milessabin/shapeless shapeless | 2.7k| 30.5k|A Scala library for generic programming
scalatra/scalatra scalatra | 2.4k| 8.4k|A tiny, Sinatra-like web framework
spark-jobserver /spark-jobserver| jobserver | 2.2k 7.6k|A REST job server for Apache Spark
twitter/util util 2.2k| 27.4k|A collection of core JVM libraries of Twitter
slick/slick slick 2.2k| 20.8k|A Scala library for database querying and ac-
cessing
lagom/lagom lagom 2.1k| 21.8k|A framework for building reactive microservice
systems in Java or Scala
lihaoyi/ Ammonite ammonite| 1.9k| 8.6k|A Scala tool for scripting purposes
Total \ [92.2K]1005.9K]

skipped, including Projects scala-js/scala-js, scala-native/scala-native,
scalanlp/breeze, spray/spray, and pocorall/scaloid; another one project
intel-analytics/BigDL that is mixedly implemented with Java and Scala is
skipped due to the failure of configuring with SemanticDB; we also removed
Project fpinscala/fpinscala that is a supplement material of practices in a
book since the project is not a real software project. Table[I] lists the summary
of 20 Scala projects in the study.

Function extraction. We collected definitions and calls of functions via
SemanticDB. We filtered out the files that are not written in Scala. For each
project, we used SemanticDB to extract all the function definitions and identified
whether there exists a function in the input or the output. That is, we collected
all the definitions of higher-order functions in each project. SemanticDB can
generate a semantic database that contains all classes, functions, objects, and
variables as well as their positions in source code. Then we collected all function
calls of the higher-order functions by parsing the above semantic database. As
shown in Table [I} in all the 20 projects, 11,671 Scala files and 1,100 KLoC are
examined in our study; 5494 definitions of higher-order functions with 21,782
calls are recorded for further analysis.

Developer extraction. We extract developers who have written the func-
tion definitions and calls to understand the use of higher-order functions. We
used the Git API to extract the Git log and collected historical commits that

200

205

210

215

220

225

230

235

8 Y. Xu et al.

relate to the changes of function definitions and calls. For each of such commits,
we extracted the developer (including the name and the e-mail) who submitted
it, the timestamp, the added changes and positions. For a definition of a higher-
order function, we sorted all related changes according to the timestamps and
identified the developer who wrote the first change as its original author [37]; for
a function call, we similarly identified the first developer as its original author
among all changes that added or modified the function call.

LoC measurement. We leverage the LoC to directly measure the lines of
code of a higher-order function. The LoC is the number of executable lines of
code without blank or comments; to count LoC, we measured the lines of Scala
code inside a higher-order function. We used LoC as a simple way to briefly
record the length of code.

Code complexity measurement. We use the Cyclomatic complexity to
measure the complexity of the definition of a higher-order function. The Cy-
clomatic complexity is a software metric of linearly independent paths [I8]; to
count the Cyclomatic complexity, we used the static analysis tool Scalameta to
parse Scala files and construct the ASTE Then we identified the Cyclomatic
complexity of each higher-order function by traversing its AST.

Code style measurement. We leverage the number of suspected issues
of code style of Scala functions to measure the code quality of a higher-order
function. We define # Style Warnings as the number of suspected issues of code
style via an off-the-shelf checking tool of the code style, ScalaStyleE For each
definition of a higher-order function, we count the number of issues inside the
definition.

3.2 Research Questions

Our work is to understand the use of higher-order functions in Scala programs.
We designed RQs to analyze the definitions and callings in five categories: the
data scale, the definitions and calls, the developer contribution, and the factor
that affects the function calls.

RQ1. How many higher-order functions exist in Scala projects?
Higher-order functions are introduced to many programming languages. How-
ever, the ratio of higher-order functions among all functions is unclear. We de-
signed RQ1 to reveal the data scale of using higher-order functions, i.e., how
many higher-order functions are there in Scala programs. Intuitively, a complex
higher-order function could be seldom called. We analyze the definitions and
calls of higher-order functions in RQ1.

RQ2. How are higher-order functions defined and called? In general,
a higher-order function can input a function as a parameter and/or output a
function as a returned result. This leads to three kinds of higher-order functions
based on the input and the output. Are higher-order functions only called by the
authors who have written the function definitions? We aim to investigate how

10 Scalameta, http://scalameta.org/.
11 ScalaStyle, http://www.scalastyle.org/.

http://scalameta.org/
http://www.scalastyle.org/

240

245

250

255

260

265

270

275

280

Mining the Use of Higher-Order Functions 9

many functions are called by the same developers or by the other developers in
RQ2.

RQ3. How much is the overlap of calling higher-order functions and
calling lambda expressions? Higher-order functions and lambda expressions
are two concepts of supporting code reuse in Scala and other modern languages.
The lambda expressions can be used as input parameters of higher-order func-
tions. Developers feel confusing when using higher-order functions and lambda
expressions [30], [31]. Thus, we analyze the overlap of calling higher-order func-
tions and lambda expressions in RQ3.

RQ4. How do developers contribute to write higher-order func-
tions? Besides source code, developers play an important role of using higher-
order functions. In RQ3, we aim to examine how many developers are involved
in using higher-order functions.

RQ5. Which factor affects the calls of higher-order functions? Higher-
order functions are expected to abstract the use pattern of functions [11]. In RQ4,
we investigate the potential factors that affects the number of calls of higher-
order functions. Empirical results of RQ4 can provide a way to understand how
to increase the number of function calls.

4 Empirical Results

We conducted experiments on higher-order functions and investigated five re-
search questions. The results and findings based on these research questions are
listed as follows.

4.1 RQI1. How many higher-order functions exist in Scala projects?

Goal. We aim at answering RQ1 and exploring the data scale of using higher-
order functions. The LoC, the Cyclomatic complexity, and the warnings in the
code style are leveraged to directly measure the source code of Scala functions.

We collected definitions and calls of all higher-order functions in 20 Scala
projects. Table [2] lists the ratios of defining and calling higher-order functions
among all functions. In total, there exist 5494 definitions and 232727 calls of
these higher-order functions. Among 20 projects, higher-order functions account
for 6.33% of function definitions in average and 7.49% of function calls. The
percentage of higher-order functions among 20 projects is unstable: the ratio of
definitions of higher-order functions ranges from 1.20% to 22.64% while the ratio
of calls ranges from 0.54% to 28.81%. In eight projects, over 5% of functions are
defined as higher-order functions; in seven projects, over 10% of function calls
are for higher-order functions. Among 20 projects, Project scalaz reaches the
highest ratio of defining and calling higher-order functions; Project kafka reaches
the lowest ratio of definitions while Project openwhisk reaches the lowest ratio
of calls.

As shown in Table [2] only 5 out of 20 projects have a higher ratio than the
average ratio 6.36% when we consider the ratio of the definitions of higher-order

285

290

295

300

10 Y. Xu et al.

Table 2. Numbers of definitions and calls of higher-order functions. Column “Ratio”
denotes the ratio of the number of higher-order functions dividing the number of all
functions.

Abbr. Function definitions Function calls
#All|#Higher-order[Ratio (%)| #All[#Higher-order[Ratio (%)
scala [24779 1216 4.91%| 96002 5162 5.38%
framework| 3095 196 6.33%| 5474 266 4.86%
gitbucket | 1056 61 5.78%| 3218 543 16.87%
finagle 6178 157 2.54%| 5904 204 3.46%
kafka 753 9 1.20%| 1216 25 2.06%
lila 5733 165 2.88%| 11240 505 4.49%
bfg 119 10 8.40% 144 5 3.47%
gatling | 2718 118] 4.34%| 4186 345 8.24%
scalaz | 8184 1853 22.64%| 14594 4191| 28.72%
openwhisk| 1409 38 2.70%| 7536 41 0.54%
sbt 4076 436 10.70%| 13638 1989 14.58%
dotty [10372 256 2.47%| 41312 770 1.86%
scalding | 4174 292 7.00%| 6285 846 13.46%
shapeless | 1936 50 2.58%| 2416 46 1.90%
scalatra | 1480 57 3.85%| 1823 33 1.81%
jobserver | 620 13 2.10%| 698 30 4.30%
util 2777 176 6.34%| 3278 500| 15.25%
slick 2881 161 5.59%| 4075 391 9.60%
lagom | 1813 70 3.86%| 1397 35 2.51%
ammonite | 792 72 9.09%| 1211 133| 10.98%
Total [84945] 5406] 6.36%]225647] 16060] 7.12%|

functions among all functions; only 8 out of 20 projects have a higher ratio than
the average ratio 7.12% when we consider the ratio of the calls of higher-order
functions among all functions. The ratio of defining and calling higher-order
functions indicates that higher-order functions account for a lower proportion
among all functions.

1) Executable Lines of Code

We used the LoC, the Cyclomatic complexity, and the warnings in the code
style to measure the complexity of definitions of higher-order functions. Fig.
presents the accumulative percentage of the definitions of higher-order functions
by counting LoC of no less than 10 lines. As shown in the figure, 17 out of 20
projects have over 10% of definitions of higher-order functions with over 10 lines;
One project, openwhisk has over 50% of definitions of higher-order functions
with over 10 lines. Considering the number of lines, 5 out of 20 projects have
over 10% of definitions of higher-order functions with over 20 lines; 3 projects
have over 10% with over 30 lines. In 7 out of 20 projects, i.e., framework, scalaz,
util, slick, bfg, shapeless, and scalatra, there exist no definitions of higher-
order functions with over 30 lines.

To further understand the distribution of LoC of higher-order functions, we
illustrated the violin-plots to present the probability density of LoC in each
project in Fig. 3l In each violin-plot, the LoC value with the broadest line indi-
cates the LoC that appears for the most times. Among 20 projects, 17 projects

305

310

Mining the Use of Higher-Order Functions 11

— 3with over 30 lines

-

g 60% mmwith [20,30) lines

= with [10,20) lines

5 50%

2

2 40%

]

5 30% I

=

S 20%

o

g

i [a1l 0mf

: [] . M

g 0% = [l

X < RN

<7>@¢\°&6‘g' Q’Q\e %&p N ‘O\Q’ ‘\\,\\Q&\,bm‘,\\(,ﬂ- '&\b‘o \Q?, \’b‘@ & K ‘}\ o &
T Y & & XL £ ® 8
& 9 & & 9 &£

Project

Fig. 2. Accumulative percentage of function definitions for higher-order functions by
counting LoC of no less than 10 lines. Term HOF's is short for higher-order functions.

100
75

50

LoC for definitions of HOFs

—
——
—
[}_
%_a
¢_
%

g —

()
éd‘
%o

Project

Fig. 3. Violin-plots of LoC for function definitions of higher-order functions. The width
of each bar is equal, which denotes the maximum number of definitions with the same
LoC inside one project.

show a similar shape, where the data are mainly concentrated at the bottom; the
other 3 projects, i.e., kafka, openwhisk, and jobserver, have not concentrated
higher than the bottom. The highest LoC reaches 104 in Project ammonite.
We concluded that the LoC of higher-order functions in most of the projects is
distributed at the bottom, i.e., the LoC less than 10.
2) Cyclomatic Complexity

Besides the lines of executable code, we leveraged the Cyclomatic complex-
ity to quantify the complexity of function definitions by counting the number of
linearly independent path. Fig. [4] presents the accumulative percentage of defi-
nitions of higher-order functions in Cyclomatic complexity. Among 20 projects,
19 projects except lagom, have over 10% of definitions of higher-order functions
with the complexity of two or more; 11 projects and 6 projects have over 20%

315

320

325

12 Y. Xu et al.

90%
80%

@with complexity of [3,5)

70% with complexity of 2
60%
50%
40%
30%
= fnmal 11 .
10%
il GG =E-NN -

R & S &

O

mm with complexity of over 5

Percentage of definitions of HOFs

&

“ T

N & GRS I O I N I PV N~ S C R . g . & .8
S &Y o"% §F ¥ & & ° %é&\vo & & FL &
F& & ¢ TS L& L e &

& @ & N N kS

Project

Fig. 4. Accumulative percentage of function definitions for higher-order functions by
counting Cyclomatic complexity of more than one.

16

i
N

©

Cyclomatic complexity for definitions of HOFs

o
{Kﬁ
>
bo__
>
Dom__
-
=
%_D__
%._
%‘

Project

Fig. 5. Violin-plots of Cyclomatic complexity for the definitions of higher-order func-
tions. The width of each bar is equal, which denotes the maximum number of definitions
with the same complexity inside one project.

and 30% of definitions of higher-order functions of two or more, respectively. As
shown in Fig. |4} 6 out of 20 projects have over 10% of definitions of higher-order
functions with the complexity of over three while two projects have over 10% of
definitions of higher-order functions with the complexity of over five.

Fig. [presents the violin-plots of Cyclomatic complexity for the definitions of
higher-order functions. From the figure, 17 projects have a similar distribution,
where the data are mainly concentrated at the bottom. Most of higher-order
functions tend to be simple code structure with the Cyclomatic complexity of less
than five. Three projects behave different: plots of Projects kafka, openwhisk,
and jobserver aggregate in the middle, not the bottom. The highest complexity
reaches 16 in Project jobserver.

Through the analysis of the LoC and complexity of higher-order functions,
we find that most higher-order functions favor low LoC and complexity. We note

330

335

Mining the Use of Higher-Order Functions 13

70%

' with #StyleWamnings of over 3
60% = with #StyleWarnings of 2
with #StyleWarnings of 1

50%

40%

30%
20%
BN il
-
& & &
8N

Percentage of definitions of HOFs

*z, > VS >
& <> & &P N E & 'é s ‘i“‘ S
& & & Q & RS
O 0 i AN
& X/ -9 &
Y N N B

®

Project

Fig. 6. Accumulative percentage of function definitions for higher-order functions by
counting the warnings in the code style over zero.

30

20

10

#StyleWarnings for definitions of HOFs

P N & @ @ @ O PN c o
@c& & \@& (&q\ PN (&\\\\% @& 4@3* B 60@ &\\Q Q}Q'(? 'z}?}\ Q&“% S 6\\ &O\ &
¢ N N ? S @
SR ® S F XS D

SER &
@ 9 & S © S

Project

Fig. 7. Violin-plots of warnings in the code style for the definitions of higher-order
functions. The width of each bar is equal, which denotes the maximum number of
definitions with the same number of warnings in the code style inside one project.

that a higher-order function can actually represent a first-order function, which
contains several times of lines of code, compared with the higher-order function
[14]; the linear increment of the LoC or complexity in a higher-order function
may represent an exponential increment of the LoC or complexity in a first-order
function.

3) Warnings of the Code Style

The code style is also used to measure the source code. Bacchelli and Bird [3]
and Georgios et al. [9] have shown that code style issues highly affect the code
review and code integration. Zou et al. [38] found that the inconsistency of the
code style can delay the process of merging new changes. In this study, we used
the number of reported warnings of the code style to measure the source code
of higher-order functions.

340

345

350

355

360

365

370

14 Y. Xu et al.

Fig. [6] presents the accumulative percentage of definitions of higher-order
functions by counting the warnings in the code style. Among 20 projects, 19
projects except gitbucket have over 10% of definitions of higher-order functions
with the warnings in the code style of one or more; 16 projects and 10 projects
have over 20% and 30% of definitions of higher-order functions with the warnings
in the code style of one or more, respectively. As shown in the figure, 11 out of 20
projects have over 10% of definitions of higher-order functions with the warnings
of two or more; two projects, kafka and ammonite, have over 10% of definitions
of higher-order functions with the code style of over three. One project, kafka,
have over 65% of definitions of higher-order functions with the code style of one
or more. This observation reveals that most of higher-order functions in Project
kafka have code style issues.

Fig. [7] presents the violin-plots of warnings in the code style for the defini-
tions of higher-order functions. Among 20 projects, 14 projects have a similar
distribution, where the data are mainly concentrated at the bottom. That ob-
servation of most of higher-order functions with the warnings of zero shows that
these higher-order functions have no code style issues. Six projects behave dif-
ferent: plots of Projects kafka, 1ila, openwhisk, scalatra, jobserver, and
ammonite aggregate in the middle. The highest number of warnings in the code
style reaches 29 in Project dotty; that is a higher-order function contains 29
reported warnings of the code style.

The warnings of in the code style exist in more than 10% of higher-order
functions among all projects. However, we should note that the not all code
style issues relates to the quality; this may result in the ignorance of code style
issues in daily development [19].

Among 20 Scala projects in our study, 6.33% of functions are defined as higher-
order functions in average. Most of function definitions tend to be simple while
there indeed exist complex definitions: 17 out of 20 projects have over 10% of
definitions of higher-order functions with over 10 lines; 19 projects have over
10% of definitions with the complexity of two or more. Code style issues widely
exist: 19 projects have over 10% of definitions with the code style of at least one
warning. Developers or project managers may need to promote the acceptance
of using higher-order functions in Scala projects in future.

4.2 RQ2. How are higher-order functions defined and called?

Goal. We aim to understand how developers define and call higher-order func-
tions. The number of function calls can be used to indicate the popularity of
using higher-order functions.

We divide all definitions of higher-order functions into three types by checking
whether the input or the output contains a function,

— Type I, a function definition takes at least one function as a parameter
without returning functions;

375

380

385

390

395

Mining the Use of Higher-Order Functions 15

/* Type T/ /* Type T #/ /* Type TI1 */
def closed|R](fn:()=> 1 def closed[R]:()=>R 1 def closed|R](fn:()=>
R)= ={ R):() => R ={
val closure = Local. 2 val closure = Local. 2 val closure = Local.
save() save() save()
val save = Local.save s ()=>R 3 O =>
0 .} . {
Local.restore(closure) 5 val save = Local.
try fn() save()
finally Local.restore(6 Local.restore(
save) closure)
} 7 try fn()
8 finally Local.
restore(save)
S
o)

Fig. 8. Examples of higher-order functions in Type I, Type II, and Type III.

— Type II, a function definition returns at least one function without inputing
a function;

— Type III, a function definition takes at least one function as a parameter
and returns functions.

Fig. 8 shows examples of three types of definitions of higher-order functions.
The example in Type I takes a function fn() as input and has no specific output;
the example in Type II has no input and returns an anonymous function as
output; the example in Type III takes the function fn() as input and returns
an anonymous function as output.

We briefly present the distribution of definitions and calls of three defined
types of higher-order functions. Fig. [0 presents the percentage of function defini-
tions of higher-order functions in all projects by categorizing the definition types.
Among 20 projects under consideration, we can observe that 14 projects contain
over 80% of definitions in Type I while 7 projects contain 90% of definitions in
Type I. This observation shows that Type I of higher-order functions are more
frequently defined than the other two types. In Project kafka, the percent of
Type I of higher-order functions is highest and reaches 100%; in Project bfg,
the percent is lowest and is 50%. Meanwhile, in 12 projects, over 10% of defini-
tions of higher-order functions belong to Type II and in 5 projects, over 20% of
definitions of higher-order functions belong to Type II. In addition, Type III
of higher-order functions account for over 10% in 2 projects.

We further show the percentage of calls of higher-order functions in three
types in Fig. We can find that 14 out of 20 projects have over 80% of calls of
higher-order functions in Type I while 11 projects contain 90% of definitions in
Type I. In one project, kafka, the percentage of Type I of higher-order func-
tions is the highest and reaches 100%. Meanwhile, in 9 projects, over 10% of

400

405

410

16 Y. Xu et al.

‘ Typel =aTypell mmTypelll ‘
100% pum = -**.*-*-:—:——.-:—
s [] »
S sou i i M 1
b [L [
g70% ||
£ 60%
E
£ 50% =
=
s 40%
M
F 3%
=
g 20%
s
&~ 10%
0%
RN N O T R TP RV NP s L B & D & @
P & ¥ O K T O P FF & Y &S
B 6@4‘ & ¥ & & & Sl & & S
&9 R £

Project

Fig. 9. Percentage of function definitions of higher-order functions in all projects by
categorizing the definition types.

[OTypel =aTypell maTypelll

100%:—._—— e
90% L M 1

80% . —
70%]
60%
50%
40%
30%
20%
10%
0%

i
B
I
|

Percentage of calls of HOFs

Project

Fig. 10. Percentage of function calls of higher-order functions in all projects by cate-
gorizing the definition types.

calls of higher-order functions belong to Type II, and in 7 projects, over 20%
of calls of higher-order functions belong to Type II. Only one project, bfg, has
over 10% of calls of higher-order functions in Type III. According to Fig.[9]and
Fig. Type I accounts for the highest percent among all the definitions and
calls of higher-order functions.

Among the large number of function calls, how many functions are only called
by the same developers who design the functions? We further investigate this
question to understand the overlap of developers between function definitions
and calls. As mentioned in Section we collected developer information via
the Git API. For the sake of simplification, we identified the first developer, who
has created the definition or the call of higher-order functions, as the author of
defining or calling higher-order functions.

Fig.[IT]illustrates the percentage of definitions in three categories: a definition
that is only called by the author of the definition, a definition that is only called

415

420

425

430

435

440

Mining the Use of Higher-Order Functions 17

100% I — —
B =N L m
80%

70%

60%

50%

40%

30%

20%

10%

0%

&

Percentile of definitions called by different
developers

X X N <
FFEFLE PP ISP S &
& N & e S F & ¥ O & > 9

NS F TS S & LS v
&9 R 2 N >

Project

mm definition that is called by both its author and other developers
Emdefinition that is only called by other developers except the author of the definition
definition that is only called by the author of the definition

Fig. 11. Percentage of function definitions that are called by different types of devel-
opers.

by other developers except the author of the definition, and a definition that
is called by both its author and other developers. Among 20 projects under
consideration, we can observe that 16 projects have over 50% of definitions of
higher-order functions which are only called by the author of these definitions
while 6 projects contain 80% of definitions in the first category. In Project kafka,
the percent of the first category of higher-order functions is highest and reaches
100%. This observation shows that the definitions of higher-order functions are
more frequently called by the author of these definition than other developers. In
addition, in 11 projects, over 20% of definitions of higher-order functions belong
to the second category and in 8 projects, over 20% of definitions of higher-order
functions belong to the third category.

Besides the function definitions, we refined the function calls of each project
according to the overlap of developers of functions definitions and calls. Table
lists the number of function calls based on three types of definitions and the
the overlap of developers. Among 60 mini-bar charts, there exist 11 blank ones,
including 2 blank mini-bar charts in Type II and 9 in Type III. Among the 49
non-blank mini-bar charts, 33 charts show that most of calls are made by the
authors of functions definitions; 1 chart shows that most of calls are made by
other developers; and 15 charts shows that most of calls are made by both the
authors of definitions and other developers. This fact indicates that most of calls
of higher-order functions are made by the same developers who have written
the higher-order functions. That is, there exist a large percent of higher-order
functions that are not designed for collaborative development among developers.

As shown in Table there also exist 3237 function calls of higher-order
functions that are made by developers other than the authors of definitions,
including 3009 calls of Type I, 169 calls of Type II, and 59 calls of Type III.
This observation indicates that developers have maintained the collaboration
between defining and using functions. We can also observe that among all the

445

450

18 Y. Xu et al.

Table 3. Function calls of higher-order functions based on the types of Type I, Type
II, and Type III and the overlap of the authors of definitions and calls. The number
of calls of each definition type is listed, including the number of functions that are
called only by the authors of the definition, only by developers other than the authors,
and both. We illustrate mini-bar charts to briefly compare the number of function calls
inside each definition type of each project. Sub-columns “All”; “Self”, “Others”, and
“Both” under each type of calls denote the number of all function calls, the calls that
are only made by the authors of function definitions, the calls that are only made by
developers other than the authors of definitions, and the calls that are made by both
authors and other developers.

#Calls of Type I #Calls of Type 11 #Calls of Type II1
Index Project #Calls
All Self [Others| Both All | Self [Others| Both All | Self |Others| Both
1 scala 5162 | 5047 | 376 | 1849 2822 103 | 44 [38 (21 |Hmmf| 12| 4| 8 | O [ul
2 | framework 266 234 | 95 [32| 107 32 5 6 [21|-=Hf O] O] OO
3 gitbucket 543 489 [75 | 11 | 403 0 0 00 54 132({0 (22|08 m
4 finagle 204 186 | 90 | 45 51 16 [15| 1 o (H_ 2 (2f(0]o0 |0
5 kafka 25 25 25 0 0 0 0 010 010]071]0
6 lila 505 391 [298 | 6 87 114 | 1121 2 | 0 (N 010]071]0
7 bfg 5 3 2 1 0 1 1 0o (N 1 1] 0] 0 |N
8 gatling 345 313 [127 | 5 181 32 (32100 (N 0]1]0]071]0
9 scalaz 4191 | 3677 | 550 | 584 | 2543 438 | 54 | 66 |318|--MW| 76 | 7 [35| 34 |-HN
10 | openwhisk 41 15 9 5 1 6 3 1 2 Hamf| O] O] OO
11 sbt 1989 [1415 | 295 [201 | 919 505 | 76 | 38 |391|—_Mf| 69 [13| 11 | 45 =N
12 dotty 770 740 | 280 | 47 | 413 28 [18 2 | 8 (H_wff 2 [2] 0] 0 |N
13 scalding 846 829 | 201 | 75 | 553 13|10 3]0 (Ha 4 (o040 N
14 | shapeless 46 36 20 4 12 10460 ull 0]10]0]0
15 scalatra 33 21 18 3 0 12 1 219 |--Bfojo]o|oO
16 | jobserver 30 24 16 8 0 6 4 2 (0 |Hm 0Of[0] O 0
17 util 500 473 | 58 [126 | 289 1501005 (0 wf 127]1 4 |l_m
18 slick 391 363 [185 | 4 174 23 (12 2|9 (H_mf 5[5 0] 0 |N
19 lagom 35 34 23 2 9 1 1 (O | 0]10]0]0
20 | ammonite 133 125 | 64 1 60 8 8 0]o |l 01010710
Total 16060 |[14440]2807[3009] 8624 [=M[[1363 [410] 169 784]w—_M[237] 73 [59 [105 [mull

charts in Type I, the higher-order functions in 11 out of 20 projects are mostly
called by their authors; in Type II, the higher-order functions in 13 projects
are mostly called by their authors. However, in the total data of 20 projects, we
find that the higher-order functions are mostly called by both authors and other
developers. The reason for this observation is that the higher-order functions
in three large projects, including scala, scalaz, and sbt, are mostly called by
both authors and other developers. This indicate that in several large projects,
such as Project scala, developers may tend to work more collaboratively than
in small projects.

Among all definitions of higher-order functions in the study, inputing functions as
parameters is the commonest type of defining higher-order functions. Among all
calls of higher-order functions, most of calls are made by the same developers who
have defined the functions; meanwhile, there indeed exist higher-order functions
that are only called by developers other than their authors of definitions.

455

460

465

470

Mining the Use of Higher-Order Functions 19

| Lh{m

'Y

& @ ¥ O O

PR <
S & &

©
2

mmm calling HOFs with lambda in all HOFs
Tcalling HOFs with lambda in all calling with lambda
@

[l IL

s S
A
& s '? & b@

Project

\.
2

o
2

a
2

©
2

Percentage of calling HOF with lambda
N N
2 2

§

¥ &
S
&

9”6

Fig. 12. Percentage of the overlap of calling higher-order functions and lambda expres-
sions.

4.3 RQ3. How much is the overlap of calling higher-order functions
and calling lambda expressions?

Goal. We aim to analyze the number of calling higher-order functions and
lambda expressions and to show their overlap and difference.

A lambda expression is a kind of anonymous function without function iden-
tifier. In Scala language, a lambda expression uses the following syntax (a:
Int, b: Int) => a + b to denote a function that adds two integers a and
b. The lambda expressions have been drawn attention from the research com-
munity [I0J2[82IT7I21]. As a function, a lambda expressions can be called as a
parameter of higher-order functions. The concepts of higher-order functions and
lambda expressions are different: a higher-order function is a function of func-
tions while a lambda expression is a kind of anonymous function. However, in
practice, developers may feel confusing when facing higher-order functions and
lambda expressions [30], [31]. In this research question, we investigate the calling
of higher-order functions and lambda expressions in Scala programs.

We define two measures to count the overlap of calling higher-order functions
and lambda expressions,

tio #intersection # calls of higher-order functions that contain lambda expressions
ratio =

#higher-order # calls of all higher-order functions

» (#intersection) # calls of higher-order functions that contain lambda expressions
ratio =

#lambda

Fig. presents the ratio of overlap of calling higher-order functions and
lambda expressions according above two measures. As shown in Fig. 17 out
of 20 projects have over 30% of lambda expressions in the calling of higher-
order functions; 9 projects have over 40% of lambda expressions in the calling
of higher-order functions, and 5 projects has over 50% of lambda expressions
in the calling of higher-order functions. The illustration in Fig. shows that

calls of all lambda expressions

475

480

485

490

495

20 Y. Xu et al.

||

s I B

[

| 1

o
S

®E LD
l

1
X " g X S 3V & > S > > -
S & & & ¥ HEFHTFS T E & & &
& & ~ & <« & >) S & & &
& © & . & W & & &
« © & Project A

Fig. 13. Box-plots of function definitions per developer in the log scale.

calling lambda expressions does not indicate calling higher-order functions; vice
versa. Meanwhile, the number of calling higher-order functions is higher than
the number of calling lambda expressions in all 20 projects under in the study.

Our study shows that calling higher-order functions and lambda expressions
behaves different in practice. This fact can be viewed as an empirical evidence
that higher-order functions and lambda expressions should be carefully used in
daily development.

4.4 RQ4. How do developers contribute to write higher-order
functions?

Goal. Developers play an important role in defining and calling higher-order
functions. We extracted and counted the number of defined or called functions
that are contributed by different developers.

To understand the contribution of function definitions, we counted how many
functions are defined by each developers. Fig. [I3] presents the box-plots of func-
tion definitions per developer in the log scale. We can observe that developers
behave different among projects. As shown in Fig. the median value of func-
tion definitions by each developer is no more than 6 in 19 out of 20 projects;
one exception is Project ammonite, whose median is 10.5. In 17 projects, the
maximum value of contributed definitions by each developer is 10 or more; in 4
projects, the maximum value reaches over 100 definitions. In 14 projects, each of
over 25% of developers have contributed 5 definitions of higher-order functions;
in 8 projects, each of 25% of developers have contributed 10 definitions. We find
out that several developers have indeed defined many higher-order functions in
their daily development.

We also illustrated the contribution of calling higher-order functions. Fig. [I4]
presents the box-plots of function calls per developer in the log scale. The median
value of contributed calls by each developer is 7 or less in 19 out of 20 projects;
one exception is Project shapeless with the median of 10. In 15 out of 20

500

505

510

Mining the Use of Higher-Order Functions 21

Fig. 14. Box-plots of function calls per developer in the log scale.

100% W definitions of HOFs
80%
70%

. 60%

50%

40%

30%

20%

Percentage of contributions by top-20% developers

10%

0%

O A - N R N
& FPFLEFN P
R & g » £ & ¥ QQ} »* ee'é s \‘bo"o ©
& F N & & &£ K £ § &
& 9 R % N ES

Project

Fig. 15. Percentage of the contribution of definitions and calls of higher-order functions
by top 20% developers.

projects, the maximum of contributed calls by one developer is over 10; in 5
projects, the maximum of calls is over 100. Meanwhile, in 11 projects, each of
over 25% developers who have contributed 10 calls of higher-order functions;
in 5 projects, each of over 25% developers who have 20 calls. This observation
shows that there exist many developers who have called higher-order functions
for multiple times.

To further understand the developer contribution, we examined the number
of definitions and calls by the top 20% developers who have contributed the
most. The choice of top 20% developers is derived from the 80-20 rule from
the empirical study in sociology, which reveals that 80% of outcomes are made
from 20% of products [1225]. Fig. presents the percentage of contributions
by top 20% developers. Considering the contributions, on the one hand, 8 out of
20 projects have over 80% definitions of higher-order functions contributed by

515

520

525

530

535

540

22 Y. Xu et al.

Table 4. Spearman’s rank correlation coefficient between the number of calls and three
measurements (LoC, complexity, and #StyleWarnings) for each higher-order function.

’ \\Min\Max\Average\Coeﬂicient\ p-value

LoC 1 |104|4.5203 | 0.2301 |[<2.20E-16
Complexity 1|16 |1.4051| 0.1817 |[<2.20E-16
#StyleWarnings|| 0 | 29 | 0.4173| 0.0016 0.9052

top 20% developers; 5 projects even have over 90% definitions of higher-order
functions contributed by top 20% developers. On the other hand, 10 out of 20
projects have over 80% callings of higher-order functions, 7 projects have over
90% callings of higher-order functions contributed by top 20% developers. In
total, the top 20% developers have contributed 76.15% function definitions and
78.06% calls.

Among 20 projects, the number of function definitions by each developer ranges
from 1 to 351; the number of function calls by each developer ranges from 1 to
1297. The top 20% developers have contributed 76.15% function definitions and
78.06% calls in total.

4.5 RQ5. Which factor affects the calls of higher-order functions?

Goal. We tend to find out the factors that affect the number of calls of higher-
order functions. In each project, we leverage the Spearman’s rank correlation
coefficient to show the correlation between the calls and LoC, Cyclomatic com-
plexity, and #StyleWarnings, respectively.

‘We use the Spearman’s rank correlation coefficient to measure the correlation
between the number of calls and a factor that potentially affect the calls. Spear-
man’s rank correlation coefficient is a non-parametric measure of the statistical
correlation between two variables [34]. The correlation coeflicient is calculated
with the covariance of ranks of two given variables. The coefficient varies from
—1 to 1. A positive coefficient means that a variable increases when the other
variable increases while a negative coefficient means that a variable decreases
when the other variable increases. The absolute value of the coefficient indicates
the degree of correlation between two variables: zero is no correlation and one is
completely correlated. We consider that a p-value less than 0.05 is statistically
significant.

Table [presents the Spearman’s rank correlation coefficient between the
number of calls of higher-order functions and three defined measurements, LoC,
Cyclomatic complexity, and #StyleWarnings. For each measurement, we show
the minimum, the maximum, the average, the coefficient, and the p-value. As
shown in the table, LoC and Complexity show the correlation coefficients of 0.23
and 0.18 with the number of function calls. That is, a higher-order function with
more executable lines of code or higher complexity can be called for more times. A
possible reason is that a function with many lines or high complexity may contain

545

550

Fig. 17.

Mining the Use of Higher-Order Functions

#Function calls per definition

il |

[1:2] [3:5] [6,|10) [10:15) [15:20) [20:25) [25:30) [30:40) [40:50) [50:70) [7|0,°0)
LoC

Fig. 16. Number of function calls per definition for LoC.

#Function calls per definition

1 2 3 4 5 6 7 8 9 10 =1
Cyclomatic complexity

Number of function calls per definition for Cyclomatic complexity.

23

rich information and detailed functionality. The number of reported warnings in
the code style of a higher-order function does not show the correlation with the
number of calls.

We illustrated the numbers of function calls for three measurements. Fig. [16]

presents the illustration of number of function calls for different values of LoC.
The width in each violin represents the density of function calls. As shown in
Fig. the shape of the violin gradually narrows when the LoC increases. Most
of higher-order functions are called for one or twice. When the LoC is over 25,
each violin basically behaves as a straight line; that is, the destiny is low. We

555

560

565

570

575

24 Y. Xu et al.

#Function calls per definition

0 1 2 3 4 5 6 7 8 =9
Code style

Fig. 18. Number of function calls per definition for #StyleWarnings.

can observe that the maximum number of calls shows a decreasing trend as the
LoC increases, although there exists a slight fluctuation between the LoC of 10
and 30.

Fig. [I7] illustrates the numbers of function calls for different values of Cy-
clomatic complexity of higher-order functions. We observe that the structure of
most higher-order functions is not complicated and the higher-order functions
with the Cyclomatic complexity of one account for the vast majority. As shown
in Fig. there exists a higher-order function with Cyclomatic complexity of
four that has the most calls over 1000. As the Cyclomatic complexity of higher-
order functions increases, the maximum number of calls of higher-order functions
generally decreases. The maximum number of higher-order function calls with
Cyclomatic complexity less than or equal to four is higher than the maximum
number of higher-order function calls with Cyclomatic complexity over four.

Fig. [18| presents the illustration of the numbers of function calls with #Style-
Warnings. As shown in Fig. most higher-order functions have no code style
warning. Higher-order functions with warnings concentrated on the number of
one or two. Meanwhile, as #StyleWarnings increases, the maximum value of
higher-order function calls fluctuates. One possible reason for this fact is that
the requirements of the code style is not consistent among all projects in the
study.

Table 5| presents the Spearman’s rank correlation coefficient between the
number of calls and the three measures, including LoC, Cyclomatic complexity,
and #StyleWarnings, for higher-order functions in each project. As shown in Ta-
ble 5} LoC and Cyclomatic complexity show positive correlations with the num-
ber of function calls in most projects; that is, a higher-order function with more
executable lines of code or higher complexity can be called for more times. The p-
values of correlation coefficients shows the statistical significance: the number of

580

585

590

595

Mining the Use of Higher-Order Functions 25

Table 5. Spearman’s rank correlation coefficient between the number of calls and the
three measures (LoC, complexity, and #StyleWarnings) for each higher-order function
in all projects under evaluation.

Project LoC Complexity #StyleWarnings
Coefﬁcient‘ p-value Coefﬁcient‘ p-value Coeﬂ‘icient‘ p-value
scala 0.2531|<2.20E-16 0.1684| 3.44E-09 0.1162|4.90E-05
framework 0.0515 0.4737| -0.1757 0.0138 0.0229| 0.7502
gitbucket -0.0449 0.7314 -0.0181 0.8898 0.0278| 0.8318
finagle 0.2426 0.0022 0.2122 0.0076 0.0358| 0.6565
kafka 0.6610 0.0526 0.2219 0.5661 0.2155| 0.5776
lila 0.0823 0.2931 -0.1249 0.1099| -0.2336| 0.0025
bfg 0.3584 0.0023 0.2162 0.0722 0.2625| 0.0281
gatling 0.2944 0.0012 0.1551 0.0936 0.0577| 0.5345
scalaz 0.2489| <2.20E-16 0.2489|<2.20E-16| -0.1184|3.18E-07
openwhisk -0.3192 0.0508 -0.1820 0.2743 0.0489| 0.7707
sbt 0.1741 0.0003 0.1829 0.0001 0.0061| 0.8997
dotty 0.2037 0.0010 0.1429 0.0222 0.0648| 0.3013
scalding 0.0397 0.4987 0.0730 0.2138| -0.1933| 0.0009
shapeless 0.3321 0.0185 0.4785 0.0004 0.3159| 0.0255
scalatra 0.3976 0.0022 0.2498 0.0610| -0.3781| 0.0037
jobserver -0.3588 0.2286 -0.4084 0.1659 -0.2307| 0.4483
util 0.2791 0.0002 0.3296| 7.96E-06 -0.0802| 0.2899
slick 0.0758 0.3395 0.1702 0.0309 -0.0166| 0.8341
lagom 0.3584 0.0023 0.2162 0.0722 0.2625| 0.0281
ammonite 0.3932 0.0006 0.1805 0.1291 -0.0611| 0.6103

calls of higher-order functions correlates with the LoC in 12 out of 20 projects,
with the Cyclomatic complexity in 9 projects, and with #StyleWarnings in 8
projects. For the LoC, coefficients of 12 projects with statistical significance have
positive correlations of over 0.17. For the Cyclomatic complexity, coefficients of
8 out of 9 projects with statistical significance have positive correlations. For
#StyleWarnings, coefficients of 4 out of 8 projects with statistical significance
show positive correlations with the number of function calls while coefficients of
the other 4 projects show negative correlations.

The number of calling higher-order functions correlates with the number of exe-
cutable lines of code (with an coefficient of 0.23) and the Cyclomatic complexity
(with an coefficient of 0.18). Results on individual projects show that the corre-
lations with the number of executable lines of code are positive; all correlations
but one with the Cyclomatic complexity are positive; the warnings of the code
style contain both positive correlations and negative correlations.

5 Threats to Validity

We discuss the threats to the validity to our work in three dimensions.
Threats to construct validity. In the study, we quantified the complex-
ity and the warnings in the code style of a higher-order function via leveraging

600

605

610

615

620

625

630

635

26 Y. Xu et al.

three measures, i.e., LoC, Cyclomatic complexity, and #StyleWarnings. We chose
these three measures because they are widely used and can be simply extracted
via off-the-shelf tools. We notice that there exist several other measures or tools
that can be used as measures, such as the Halstead complexity to measure the
functional complexity based on parsing operators [I]. We plan to involve other
measures in further work. In Section we identify developers via their e-mail
addresses. However, if a developer uses two or more e-mail addresses, it is dif-
ficult to simultaneously match these e-mail addresses to the same developer.
Such multiple e-mail addresses of a single developer may hurt the computation
of developer contributions, e.g., the result in Section

Threats to internal validity. The correlation analysis in the paper may be
biased by potential confounding variables. Since it is difficult to exhaust many
potential variables, we used Spearman’s rank correlation coefficient to measure
the linear correlation between two variables. The experimental results in the
paper can be viewed as the observation and could be further explored.

Threats to external validity. Our study selected 20 Scala projects accord-
ing the number of stars from GitHub. Therefore, our empirical study may not
represent the general result of using higher-order functions in all Scala projects.
Selecting projects based on the number of stars or the number of forks may lead
to the bias of sampled projects. In our study, we have filtered out several projects,
such as Project scala-js due to the issues of configurations and requirements
of the tool SemanticDB. Such filtering may also result in the selection bias of
projects. The experimental results can only indicate the observation and findings
based on the data collection and preparation in this paper

6 Related Work

The aim of this paper is to conduct an exploratory study on using higher-order
functions in Scala programs. We summarized the related work in two categories,
the study on using higher-order functions and the study on Scala programs.

6.1 On Using Higher-Order Functions

Many studies used higher-order functions as a new paradigm to solve complex
problems. Wester and Kuper [35] applied higher-order functions as a trade-off be-
tween time and area for large digital signal processing applications. They further
converted the higher-order functions in Haskell into data flow nodes to weigh par-
ticle filter time and space consumption [36]. Clark and Barn [§] used higher-order
functions in dynamic reconstruction of event-driven architectures to increase the
flexibility of the model. Bassoy and Schatz [4] optimized higher-order functions
to quickly calculate tensors; their optimized implementation achieved 68% of the
maximum throughput of the Intel Core i9-7900X. Nakaguchi et al. [20] treated
services as functions and used higher-order functions to combine these services
without creating new services. Racordon [24] leveraged higher-order functions to

640

645

650

655

660

665

670

675

Mining the Use of Higher-Order Functions 27

implement components to provide coroutines for programming language without
coroutines.

Existing studies have been conducted to understand the difficulty of verify-
ing and testing higher-order functions. Madhavan et al. [I6] presented a novel
approach that uses lazy evaluation and memoization to specify and verify the
resource utilization of higher-order functional programs. Voirol et al. [33] pre-
sented a validator for pure higher-order functional Scala programs, which sup-
port arbitrary function types and arbitrary nested anonymous functions. Rusu
and Arusoaie [28] embedded a higher-order functional language with imperative
features into the Maude framework to verify higher-order functional programs.
Selakovic et al. [29] presented LambdaTester to automate test generation for
higher-order functions in dynamic languages. Lincke and Schupp [14] proposed
the transformation that converts higher-order functions into lower-order func-
tions by mapping higher-order types to lower-order types.

In this paper, we proposed the first study on how developers use higher-order
functions in Scala programs. We conducted five research questions to understand
the definitions and calls of higher-order functions.

6.2 On Scala Programs

The Scala language has been widely studied in the research community. We
list several related works to briefly introduce the recent progress on the study of
Scala programs. Cassez and Sloane [7] presented a Scala library called ScalaSMT,
which supports the Satisfiability Modulo Theory (SMT) solving in Scala via ac-
cessing mainstream SMT solvers. Kroll et al. [I3] used pattern matching of the
Scala language and presented a framework that supports the straightforward
and simplified translation via connecting a formal algorithm specification and
executable code. To implement efficient super-compilers for arbitrary program-
ming languages, Nystrom [22] designed a Scala framework that can be used
for experimenting with super-compilation techniques and constructed directly
from an interpreter. Reynders et al. [26] defined a multi-tier language, Scalagna,
which combines the existing Scala JVM and JavaScript ecosystems into a sin-
gle programming model without requiring changes or rewrites of existing Scala
compilers. Karlsson and Haller [II] presented the first implemented design for
records in Scala which enables type-safe record operations. In the field of educ-
tion, van der Lippe et al. [I5] leveraged the Scala programming language and
the WebLab online learning management system to automate specification tests
on the submissions by students submissions. Additionally, they have developed
a scalable solution for running a course on concepts of programming languages
using definitional interpreters.

Our study in this paper focuses on higher-order functions, an important
feature of the Scala language. Understanding the use of higher-order functions
can help improve the reusability and maintenance of source code.

680

685

690

695

700

705

710

715

720

28 Y. Xu et al.

7 Conclusions

In this paper, we conducted an exploratory study on the use of higher-order func-
tions in Scala programs. We collected definitions, calls, and authors of higher-
order functions from 20 Scala projects with the most stars. Our study shows that
higher-order functions are not widely used in Scala programs and most of higher-
order functions are defined and called by the same developers. We also find that
the number of calls of higher-order functions correlates most with the number
of executable lines of code and the code complexity. Constructing higher-order
functions from existing functions decreases the number of similar functions and
improves the code reuse; understanding higher-order functions can be used to
support automated code reuse and code generation.

In future work, we plan to conduct user questionnaires to invite developers
to further evaluate the use of higher-order functions. Such evaluation is to re-
veal potential difficulty or practical issues in using higher-order functions. We
also plan to conduct experiments on the changes on higher-order functions, e.g.,
the different developers who have changed the definition of higher-order func-
tions. This may help understand the evolution of higher-order functions and
guide the future development with higher-order functions. Another future work
is to conduct automated code reuse and refactoring via abstracting higher-order
functions from existing functions.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (Grant No. 61872273).

References

1. Albrecht, A.J., Jr., J.E.G.: Software function, source lines of code, and development
effort prediction: A software science validation. IEEE Trans. Software Eng. 9(6),
639-648 (1983)

2. Arefin, M., Khatchadourian, R.: Porting the netbeans java 8 enhanced for loop
lambda expression refactoring to eclipse. In: Companion Proceedings of the 2015
ACM SIGPLAN International Conference on Systems, Programming, Languages
and Applications: Software for Humanity, SPLASH 2015, Pittsburgh, PA, USA,
October 25-30, 2015. pp. 58-59 (2015)

3. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code
review. In: Proceedings of the 2013 International Conference on Software Engi-
neering. pp. 712-721. IEEE Press (2013)

4. Bassoy, C., Schatz, V.: Fast higher-order functions for tensor calculus with tensors
and subtensors. In: Computational Science - ICCS 2018 - 18th International Con-
ference, Wuxi, China, June 11-13, 2018, Proceedings, Part I. pp. 639-652 (2018)

5. Brachthauser, J.I., Schuster, P.: Effekt: extensible algebraic effects in scala. In:
Proceedings of the 8h ACM SIGPLAN International Symposium on Scala,
SCALAQSPLASH 2017, Vancouver, BC, Canada, October 22-23, 2017. pp. 67—
72 (2017)

6. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-
phism. ACM Comput. Surv. 17(4), 471-522 (1985)

725

730

735

740

745

750

755

760

765

770

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Mining the Use of Higher-Order Functions 29

Cassez, F., Sloane, A.M.: Scalasmt: satisfiability modulo theory in scala. In:
Proceedings of the 8h ACM SIGPLAN International Symposium on Scala,
SCALAQSPLASH 2017, Vancouver, BC, Canada, October 22-23, 2017. pp. 51—
55 (2017)

. Clark, T., Barn, B.S.: Dynamic reconfiguration of event driven architecture using

reflection and higher-order functions. Int. J. Software and Informatics 7(2), 137—
168 (2013)

Gousios, G., Storey, M.D., Bacchelli, A.: Work practices and challenges in pull-
based development: the contributor’s perspective. In: Proceedings of the 38th In-
ternational Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22. pp. 285-296 (2016)

Jarvi, J., Freeman, J.: C++ lambda expressions and closures. Sci. Comput. Pro-
gram. 75(9), 762-772 (2010)

Karlsson, O., Haller, P.: Extending scala with records: design, implementation, and
evaluation. In: Proceedings of the 9th ACM SIGPLAN International Symposium
on Scala, SCALAQICFP 2018, St. Louis, MO, USA, September 28, 2018. pp. 72-82
2018

%(och,) R.: The 80/20 Principle: The Secret of Achieving More with Less: Updated
20th anniversary edition of the productivity and business classic. Hachette UK
(2011)

Kroll, L., Carbone, P., Haridi, S.: Kompics scala: narrowing the gap between al-
gorithmic specification and executable code (short paper). In: Proceedings of the
8th ACM SIGPLAN International Symposium on Scala, SCALAQSPLASH 2017,
Vancouver, BC, Canada, October 22-23, 2017. pp. 73-77 (2017)

Lincke, D., Schupp, S.: From HOT to COOL: transforming higher-order typed lan-
guages to concept-constrained object-oriented languages. In: International Work-
shop on Language Descriptions, Tools, and Applications, LDTA ’12, Tallinn, Es-
tonia, March 31 - April 1, 2012. p. 3 (2012)

van der Lippe, T., Smith, T., Pelsmaeker, D., Visser, E.: A scalable infrastructure
for teaching concepts of programming languages in scala with weblab: an expe-
rience report. In: Proceedings of the 7th ACM SIGPLAN Symposium on Scala,
SCALA@QSPLASH 2016, Amsterdam, Netherlands, October 30 - November 4, 2016.
pp. 65-74 (2016)

Madhavan, R., Kulal, S., Kuncak, V.: Contract-based resource verification for
higher-order functions with memoization. In: Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017. pp. 330-343 (2017)

Mazinanian, D., Ketkar, A., Tsantalis, N., Dig, D.: Understanding the use of
lambda expressions in java. PACMPL 1(OOPSLA), 85:1-85:31 (2017)

McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 2(4), 308-320
1976

1(\/[cInt)osh, S., Kamei, Y., Adams, B., Hassan, A.E.: An empirical study of the
impact of modern code review practices on software quality. Empirical Software
Engineering 21(5), 2146-2189 (2016)

Nakaguchi, T., Murakami, Y., Lin, D., Ishida, T.: Higher-order functions for mod-
eling hierarchical service bindings. In: IEEE International Conference on Services
Computing, SCC 2016, San Francisco, CA, USA, June 27 - July 2, 2016. pp. 798—
803 (2016)

Nielebock, S., Heumiiller, R., Ortmeier, F.: Programmers do not favor lambda
expressions for concurrent object-oriented code. Empirical Software Engineering
24(1), 103-138 (2019)

775

780

785

790

795

800

805

810

815

820

30

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Y. Xu et al.

Nystrom, N.: A scala framework for supercompilation. In: Proceedings of the 8th
ACM SIGPLAN International Symposium on Scala, SCALAQSPLASH 2017, Van-
couver, BC, Canada, October 22-23, 2017. pp. 18-28 (2017)

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mi-
haylov, N., Schinz, M., Stenman, E., Zenger, M.: An overview of the scala pro-
gramming language. Tech. rep., Technical Report 1C/2004/64, EPFL Lausanne,
Switzerland (2004)

Racordon, D.: Coroutines with higher order functions. CoRR abs/1812.08278
(2018)

Reed, W.J.: The pareto, zipf and other power laws. Economics letters 74(1), 15-19
(2001)

Reynders, B., Greefs, M., Devriese, D., Piessens, F.: Scalagna 0.1: towards multi-
tier programming with scala and scala.js. In: Conference Companion of the 2nd
International Conference on Art, Science, and Engineering of Programming, Nice,
France, April 09-12, 2018. pp. 69-74 (2018)

Richmond, D., Althoff, A., Kastner, R.: Synthesizable higher-order functions for
C++. IEEE Trans. on CAD of Integrated Circuits and Systems 37(11), 2835-2844
(2018)

Rusu, V., Arusoaie, A.: Executing and verifying higher-order functional-imperative
programs in maude. J. Log. Algebr. Meth. Program. 93, 68-91 (2017)

Selakovic, M., Pradel, M., Karim, R., Tip, F.: Test generation for higher-order
functions in dynamic languages. PACMPL 2(OOPSLA), 161:1-161:27 (2018)
Stackoverflow: Is lambda a type of higher-order function? http://stackoverflow.
com/questions/4999533/is-1lambda-a-type-of-higher-order-function (2019)
Stackoverflow: Lambda expressions and higher-order func-
tions. http://stackoverflow.com/questions/15198979/
lambda-expressions-and-higher-order-functions (2019)

Tsantalis, N., Mazinanian, D., Rostami, S.: Clone refactoring with lambda expres-
sions. In: Proceedings of the 39th International Conference on Software Engineer-
ing, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. pp. 60-70 (2017)
Voirol, N., Kneuss, E., Kuncak, V.: Counter-example complete verification for
higher-order functions. In: Proceedings of the 6th ACM SIGPLAN Symposium
on Scala, Scala@PLDI 2015, Portland, OR, USA, June 15-17, 2015. pp. 18-29
(2015)

Walpole, R.E.; Myers, S.L., Ye, K., Myers, R.H.: Probability and statistics for
engineers and scientists. Pearson (2007)

Wester, R., Kuper, J.: A space/time tradeoff methodology using higher-order func-
tions. In: 23rd International Conference on Field programmable Logic and Appli-
cations, FPL 2013, Porto, Portugal, September 2-4, 2013. pp. 1-2 (2013)

Wester, R., Kuper, J.: Design space exploration of a particle filter using higher-
order functions. In: Reconfigurable Computing: Architectures, Tools, and Appli-
cations - 10th International Symposium, ARC 2014, Vilamoura, Portugal, April
14-16, 2014. Proceedings. pp. 219-226 (2014)

Zhang, X., Chen, Y., Gu, Y., Zou, W., Xie, X., Jia, X., Xuan, J.: How do multiple
pull requests change the same code: A study of competing pull requests in github.
In: 2018 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2018, Madrid, Spain, September 23-29, 2018. pp. 228-239 (2018)

Zou, W., Xuan, J., Xie, X., Chen, Z., Xu, B.: How does code style inconsistency
affect pull request integration? an exploratory study on 117 github projects. Em-
pirical Software Engineering (Jun 2019)

http://stackoverflow.com/questions/4999533/is-lambda-a-type-of-higher-order-function
http://stackoverflow.com/questions/4999533/is-lambda-a-type-of-higher-order-function
http://stackoverflow.com/questions/4999533/is-lambda-a-type-of-higher-order-function
http://stackoverflow.com/questions/15198979/lambda-expressions-and-higher-order-functions
http://stackoverflow.com/questions/15198979/lambda-expressions-and-higher-order-functions
http://stackoverflow.com/questions/15198979/lambda-expressions-and-higher-order-functions

