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Abstract. In the process of solving real-world multi-objective problems,
many existing studies only consider aggregate formulations of the prob-
lem, leaving the relationships between different objectives less visited. In
this study, taking the software upgradability problem as a case study,
we intend to gain insights into the inter-objective relationships of multi-
objective problems. First, we obtain the Pareto schemes by uniformly
sampling a set of solutions within the Pareto front. Second, we ana-
lyze the characteristics of the Pareto scheme, which reveal the relation-
ships between different objectives. Third, to estimate the inter-objective
relationships for new upgrade requests, we build a predictive model,
with a set of problem-specific features. Finally, we propose a reference
based indicator, to assess the risk of applying single-objective algorithms
to solve the multi-objective software upgradability problem. Extensive
experimental results demonstrate that, the predictive models built with
problem-specific features are able to predict both algorithm independent
inter-objective relationships, as well as the algorithm performance spe-
cific indicator properly.
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1 Introduction

Many real-world multi-objective problems are solved with single-objective
approaches [8,10], leaving the inter-objective relationships less studied. For
example, the software upgradability problem is among the great challenges in
the field of software engineering [10,14]. The problem aims to find the most
suitable upgrade scheme that satisfies the users’ upgrade requests. An upgrade
scheme consists of a sequence of operations, including installing, removing,
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 442–452, 2016.
DOI: 10.1007/978-3-319-45823-6 41



Analyzing Inter-objective Relationships 443

and/or upgrading packages. The software upgradability problem is inherently
a multi-objective optimization problem, i.e., users may be interested in different
upgrade objectives, such as software stability, package download size, etc. Even
only considering single upgrade objective, the problem is reducible to the partial
weighted MAXSAT problem [6], which is NP-hard. Moreover, the scalability of
the software repositories poses great challenges for the upgrade process. Up to
now, there are more than 43,000 packages in the Debian repository1. The intrin-
sic complexity and the scalability make the upgrade process a difficult problem.
Meanwhile, in the literatures, most studies encode the upgrade requests into cer-
tain single-objective problem instances, such as partial weighted MAXSAT [6],
Mixed Integer Linear Programming (MILP) [10], Pseudo Boolean Optimization
[11], and Answer Set Programming [4]. Then, solvers are employed to resolve
the encoded instances. However, despite the promising accomplishments these
studies have achieved, there are still limitations to be improved. For example,
in the existing approaches, multiple upgrade objectives are handled in aggregate
ways, e.g., the weighted sum scalarization transformation or the lexicographic
combination. Hence, a potential risk of such approaches is that, the relationships
between different upgrade objectives may not be considered properly. If there
exists drastic tradeoff between different objectives, the aggregation strategy has
to be carefully chosen, e.g., the weight vector for the weighted sum approaches,
or the objective order for the lexicographic approaches.

(a) Illustration of the research framework (b) Package example

Fig. 1. Background information

To face this challenge, we take the software upgradability problem as a case
study, and intend to systematically investigate the relationships between differ-
ent objectives. Motivated by the concept of the Pareto optimality, we are inter-
ested in the insights into the characteristics of the upgrade schemes that are not
dominated by any other schemes (denoted as Pareto schemes). More specifically,

1 http://www.debian.org.

http://www.debian.org
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Fig. 1(a) illustrates the research framework in this study, which comprises three
stages. First, we intend to analyze the characteristics of the Pareto schemes.
By uniformly sampling a set of Pareto schemes, we are able to analyze the
relationships between different upgrade objectives. Then, for the meta-learning
stage, we intend to capture the characteristics of the Pareto front by train-
ing a predictive model with features extracted from instances. Finally, we are
interested in the possibility of predicting the relationships between objectives
with the trained model, and leveraging the predicted indicator to evaluate the
suitability of applying certain algorithms. More specifically, we consider the fol-
lowing Research Questions (RQs), which are listed as follows: RQ1: How are
the different objectives correlated? RQ2: Are the inter-objective relationship
of the Pareto schemes predictable with problem specific features? RQ3: Given
an upgrade request, how to assess the suitability of applying single-objective
optimization approaches?

2 Problem and Motivation

Let a universe U be a set of software packages, in which each package p is
determined by the package name and a version number. Associated with each
package, there exists a tuple (D,C), where D denotes the dependency clause set
of p, in which each clause indicates a list of software packages. In the clause, at
least one of the packages have to be installed so that package p could be installed
properly. Accordingly, C represents the conflict clause set for package p. To install
package p, none of the packages in the conflict clause corresponding to package p
should be installed. Given a universe U , a package installation profile is defined
as a subset of the packages within U . In particular, a package installation profile
is valid if all the constraints are satisfied. With the package installation profile
described, the software upgradability problem could be formulated as follows.
Given a universe U , a package installation profile P , as well as a software upgrade
request (install, remove, or upgrade a package set), the software upgradability
problem aims to determine whether there exists an installation profile P ′, so that
P ′ is a valid installation profile that satisfies the upgrade request. Moreover, the
operation sequence that transfers P to P ′ is denoted as the upgrade scheme. In
Fig. 1(b), we give the package information snippet for nano, a text editor. To
install nano version 2.5.3-2, the constraints have to be met, e.g., packages tagged
in the Depends and Conflicts fields have to be installed and removed accordingly.

In this paper, we focus on the optimization version of the problem, i.e., how
to determine the most compact valid upgrade scheme for the request. In the
literatures, there are 5 minimization upgrade objectives, which aim to minimize
the number of packages removed in the solution (f1: “removed”), the packages
changed by the solution (f2: “changed”), the number of outdated packages in
the solution (f3: “notuptodate”), the number of unsatisfiable package recommen-
dations (f4: “unsat”), and the number of extra packages installed (f5: “new”),
respectively. In the existing studies, there are mainly two types of aggregate crite-
ria, both of which consider the lexicographic combination of multiple objectives,
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i.e., the objectives are handled in a hierarchical way, and the first objective has
the highest priority. More specifically, the paranoid criterion first optimizes the
“removed” objective, then the “changed” objective. Meanwhile, the trendy cri-
terion considers the “removed”, the “notuptodate”, the “unsat”, and the “new”
objectives successively [11]. These lexicographic approaches do not have to enu-
merate all the combinations of the objectives. However, if there exists drastic
tradeoff between these objectives, the search might be sensitive to the order of
the objectives. Under such condition, analyzing the relationships between differ-
ent upgrade objectives is necessary. Meanwhile, in the evolutionary computation
literatures, a common resolution is to provide a set of Pareto optimal solutions.
Such approaches do not only provide more choices for the decision maker, but
also enable the analysis about the relationships between objectives, which might
reveal insights into the problem [12]. Inspired by the concept of Pareto opti-
mality, we are interested in deeper understanding of the software upgradability
problem. In this process, the challenge lies in the fact that, obtaining the Pareto
schemes for the software upgradability problem is very time consuming. Hence,
we would adopt the meta-learning technique to tackle this challenge.

3 Experiments and Discussion

The experiments are conducted on an Intel Core i5 3.2 GHz CPU PC with 4 GB
memory, running GNU/Linux with kernel 3.16. For the data set, we employ
the benchmark from the Mancoosi International Solver Competition 2010–2012,
in which the requests are generated from the Debian repository2. After filter-
ing the infeasible upgrade requests3, we obtain in total 350 upgrade requests.
Then, we proceed to describe the Pareto scheme sampling procedure. The Pareto
schemes could be defined as the upgrade schemes that are not dominated by
any other upgrade schemes. In the literatures, there exist various mechanisms
that could convert the problem of achieving the Pareto front into a number of
scalar optimization problems, such as the weighted sum, the Tchebycheff aggre-
gation, and the boundary intersection approaches [15]. Due to its simplicity and
effectiveness, we adopt the weighted sum approach. More specifically, for each
upgrade request, inspired by [15], the {5, 5}-simplex lattice design is employed
to generate 126 weight vectors, which are then used to construct the weighted
single-objective optimization problem. Then, for each weighted problem, we use
a publicly available solver mccs4 with Gurobi, which is a state-of-the-art MILP
solver, to compute the optimal upgrade scheme in the corresponding direction.

3.1 RQ1: Conflict Analysis

First, we are interested in the comparisons between the two existing lexico-
graphical criteria. With the trendy and the paranoid criterion, we apply mccs

2 http://mancoosi.org/misc/.
3 Note that these requests could be detected by the feature extraction phase, see RQ2.
4 http://www.i3s.unice.fr/∼cpjm/misc/mccs.html.

http://mancoosi.org/misc/
http://www.i3s.unice.fr/~cpjm/misc/mccs.html
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Fig. 2. Comparison between the trendy (x-axis) and the paranoid (y-axis) criteria

(a) Scatter plot for the Pareto schemes
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(b) Correlation distributions

Fig. 3. Properties of the Pareto schemes

over each upgrade request respectively, and plot the obtained single-objective
optimal upgrade schemes in Fig. 2. Since the two criteria share the first objec-
tive “removed”, we only plot the comparisons between the two upgrade criteria
under the rest 4 objectives. In each subfigure, the x-axis and the y-axis repre-
sent the trendy and the paranoid criteria, respectively. From Fig. 2, the follow-
ing observations could be drawn. (1) For the “changed” objective, mccs with
the paranoid criterion outperforms mccs with the trendy criterion. This obser-
vation is as expected, in that the trendy criterion does not consider optimizing
the “changed” objective. (2) Similarly, when we consider the “notuptodate” and
the “unsat” objectives, which the paranoid criterion does not care, mccs with
the trendy criterion could achieve better performance. (3) Surprisingly, for the
“new” objective, which only the trendy criterion considers, mccs with the trendy
criterion is outperformed by the same solver with the paranoid criterion. A pos-
sible reason is that, there exist certain correlation between objectives.

To examine the assumption, we plot the Pareto schemes in Fig. 3(a). Due
to the dimensional issue of the problem, we adopt the pairwise scatter plot
to illustrate the relationship between the 5 objectives. The figure comprises 3
components. First, the upper panel represents the scatter plot of the Pareto
schemes projected on each specific plane. Second, the diagonal panel illustrates
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Table 1. Feature category and examples

Domain Feature category Feature example

SAT
(54
features)

Problem size features Variable and clause numbers

Variable–clause graph
features

Variable and clause node degree
statistics

Variable graph features Node degree statistics

Clause graph features Clause graph node degree
statistics

Balance features Horn clauses fraction

MILP
(141
features)

Problem size features Number of variables and
constraints

Variable-constraint graph
features

Variable and constraint node
degree statistics

Linear constraint matrix
features

Cariable and constraint
coefficient statistics

Objective function
features

Normalized objective coefficient
statistics

LP-based features Mean value of integer slack vector

Right-hand side features Mean value of the right-hand side

Probing based features Mixed integer programming gap

the histograms that capture the distributions of the objective values for each
objective. Finally, in the lower panel, we present the Spearman correlation coef-
ficients between objectives. From Fig. 3(a), several interesting phenomena could
be observed. First, under different objectives, the distributions of the objective
values vary significantly. For example, for the “unsat” objective, the objective
values of the Pareto schemes range within [100, 250]. Meanwhile for the “new”
objective, the corresponding interval is [500, 2500]. Second, from the upper panel
of Fig. 3(a), we observe that the relationships between objectives vary greatly
as well. For example, when we consider the relationship between the “changed”
and the “new” objectives, the points in the corresponding subfigure (row 2,
column 5) exhibits a near linear pattern. This phenomenon conforms with what
we observe in Fig. 2. Furthermore, the hypothesis that the two objectives are
correlated is supported by the Spearman test, with a coefficient 0.63. When we
consider the coefficients between other objectives, conflicts could be detected.
For example, there exists a clear negative correlation between the “removed”
and the “notuptodate” objectives.

More importantly, the correlation coefficients between objectives may also
vary significantly over different upgrade requests. In Fig. 3(b), we plot the pair-
wise histograms for the 5 objectives. In Fig. 3(b), each subfigure corresponds to
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the distribution of correlations between objectives over the 350 upgrade requests,
e.g., the upper left subfigure describes the distribution of the correlation between
the “removed” and the “changed” objectives. From the figure, we can observe
several phenomena that support our hypothesis. As expected, the correlation
coefficients between objectives vary greatly. For example, the majority of cor-
relation coefficients ranges within [−1, 0], when we consider the relationship
between the “removed” and the “unsat” objectives. This implies that the two
objectives are negatively correlated. Meanwhile, the “changed” and the “new”
objectives are positively correlated. Besides, in the figures, the “NA” indicates
the upgrade request and the corresponding objectives, for which the objective
value is constant.

Summary of RQ1: We detect conflict between different upgrade objectives.
Moreover, the correlation coefficients between objectives vary greatly over dif-
ferent upgrade requests. Hence, more analysis is required, to reveal more insights.

3.2 RQ2: Correlation Prediction

In the previous experiment, we detect variation of the correlation coefficients
when considering the relationships between objectives. In practice, the corre-
lation coefficients between objectives could be helpful, such as the objective
reduction in the field of many-objective optimization [13]. However, calculation
of these coefficients requires sampling Pareto schemes, which further relies on
exactly solving NP-hard problems. Consequently, this procedure is very time
consuming. In our experiment setup, sampling Pareto schemes for the upgrade
requests costs 225,070.4 s, which may not be tolerable in practice. As a solution,
we adopt the meta-learning approach, to investigate the underlying linkages
between problem specific features and the properties of Pareto scheme. In the
literatures, meta-learning has been widely used for algorithm selection [7], and
performance prediction [5]. These approaches share a commonality, i.e., a set of
features are extracted from the instances, to characterize their properties.

To extract problem-specific features from benchmark instances, we first
encode the upgrade requests with different formulations, and construct features
with off-the-shelf feature extractors5. First, due to the close relationship between
the software upgradability problem and SAT, we could transfer the upgradabil-
ity requests into their decision version SAT instances, and obtain the problem-
specific features accordingly. Second, the software upgradability problem could
also be described as MILPs. Consequently, given an upgrade request, we gen-
erate a MILP instances considering the equally weighted sum of the 5 objec-
tives. Then, feature extraction is conducted over the instance. In particular, we
merge the features from the two problem domains together, which results in 195
features6. The feature categories and the examples for each category are listed in
Table 1. For both problem formulations, the detail of the problem features could
be found in [5]. Besides, a byproduct of the feature extraction is that, we could
5 The code is obtained from http://www.cs.ubc.ca/labs/beta/Projects/EPMs/.
6 We make the data publicly available at http://oscar-lab.org/upgradability/.

http://www.cs.ubc.ca/labs/beta/Projects/EPMs/
http://oscar-lab.org/upgradability/
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Fig. 4. Correlation prediction results (Color figure online)

detect infeasible upgrade request at an early stage. For example, if the transfered
SAT instance is claimed to be unsatisfiable, satisfying the corresponding upgrade
request will not be possible. For the sake of simplicity, with respect to the correla-
tion associated with each pair of objectives, we build a regression model, namely
random forest [1], due to its effectiveness. Given all the 350 upgrade request, we
adopt the 10-fold cross-validation to evaluate the performance of the predictive
model. In particular, those “NA” values are assigned with an exception value
(1.5 in this study).

In Fig. 4, we present the prediction results of the regression. In the figure, the
x-axis and the y-axis indicates the actual and the predicted correlation over the
test set, within each fold of validation, respectively. Different objective combi-
nations are denoted with different colors. Moreover, in the figure we present the
Root Mean Square Error (RMSE) in the figure, to measure the accuracy of the
prediction. From the figure, we observe that the trained model is able to esti-
mate the correlation properly. The majority of the points lie closely around the
reference line y = x. For the accuracy measure, all the RMSE values achieved
by random forest lie below 0.2.

Summary of RQ2: With the problem specific features extracted from the
upgrade requests, we could detect potential correlations between objectives.

3.3 RQ3: Tradeoff Assessment

As in RQ1, we observe that the performances of mccs with the trendy and the
paranoid criteria may vary greatly over different upgrade requests. More impor-
tantly, using single-objective approaches such as lexicographic programming may
pose risks within the problem solving process. If the search is overly concerned
with certain objective, chances are that there may be other objectives over which
the single-objective approaches may perform poorly [2]. Consequently, applying
these methods may cause risks during the problem solving process.

In this experiment, we propose a measurements inspired by the reference
based solution evaluation routine in the evolutionary computation literatures
[9]. More specifically, the idea originates from the concepts of the ideal reference
points, which are constructed by the best objective values with respect to each
objective, considering all the Pareto schemes. With the ideal points described, we
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(a) trendy (b) paranoid (c) prediction results

Fig. 5. Distribution of tradeoff considering different criteria, and prediction results

define the risk of applying single-objective approaches for software upgradability
problem as the maximum loss considering all the optimizing criteria:

tradeoff(s) = max
1≤i≤5

{fi(s) − fi(ideal)}, (1)

where fi indicates the objective function of each optimizing criteria, and s indi-
cates the upgrade scheme achieved by certain algorithm. Given an upgrade
scheme s achieved by certain lexicographic programming algorithm, if s is close
to the ideal point, it would be suitable to accept the upgrade scheme to realize the
upgrade process. Contrarily, a large tradeoff value implies that the correspond-
ing scheme’s quality is poor with respect to at least one objective. Accordingly,
applying the corresponding upgrade scheme may be risky.

In Fig. 5, we present the distribution of the tradeoff measurements consider-
ing the two different criteria. From the figure, the following observations could
be drawn. First, for both the criteria, the tradeoff value varies diversely over
different upgrade requests. For example, for the paranoid criterion, the tradeoff
value ranges within [0, 2286], which means that there exists both easy upgrade
requests (tradeoff = 0), and requests which leads to large tradeoff. Second, Sim-
ilar as in RQ2, calculating the tradeoff indicator requires exactly solving the
software upgradability problem. To make the measurement practical for guiding
the problem solving process, we resort to the meta-learning mechanism again,
to estimate the tradeoff with the problem specific features. The experimental
setup is the same as in RQ2, except that we change the response variable from
the correlation to tradeoff defined in Eq. 1. The prediction results are illustrated
in Fig. 5(c), which is organized similarly with Fig. 4. From the figure, we can
observe that the random forest model is able to predict the risk measurement
tradeoff accurately. For both the trendy and the paranoid criteria, the RMSEs
achieved by the random forest model are 59.8582 and 114.6998, respectively.

Summary of RQ3: In this experiment, we propose a reference based indicator
tradeoff, to assess the suitability of applying aggregation based single-objective
algorithms to solve the problem. Furthermore, we demonstrate that the measure
is predictable, using the problem-specific features, which to some extent prevent
the time consuming Pareto scheme sampling.
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4 Conclusions and Future Work

In this study, we systematically investigate the relationships between multiple
objectives of the software upgradability problem. The contributions of the paper
could be summarized as follows. First, we design a series of experiments to
analyze the inter-objective relationships for the software upgradability problem.
Second, we apply the meta-learning technique to investigate the characteristics
of the upgrade requests. Furthermore, the trained model enables the prediction
of the properties of new upgrade requests. Finally, we propose a risk indicator, to
measure the suitability of applying single-objective algorithms to solve the multi-
objective software upgradability problem. However, there are still limitations
that deserve future work. For example, the Pareto schemes are achieved by an
exact solver. Due to the intrinsic complexity, sampling Pareto schemes for large
scale upgrade request can be very time consuming. In the future, we intend
to resort to multi-objective evolutionary algorithms [3,15] to approximate the
Pareto schemes. Besides, in this study, we treat the off-the-shelf feature extractor
as a black box, to capture the characteristics of the upgrade requests. Hence,
deeper insights could be gained, if we further study the properties of the features
mined from the upgrade requests.
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