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Abstract. Finding the best configurations for a highly configurable sys-
tem is challenging. Existing studies learned regression models to predict
the performance of potential configurations. Such learning suffers from
the low accuracy and the high effort of examining the actual performance
for data labeling. A recent approach uses an iterative strategy to sam-
ple a small number of configurations from the training pool to reduce
the number of sampled ones. In this paper, we conducted a compara-
tive study on the rank-based approach of configurable systems with four
regression methods. These methods are compared on 21 evaluation sce-
narios of 16 real-world configurable systems. We designed three research
questions to check the impacts of different methods on the rank-based
approach. We find out that the decision tree method of Classification
And Regression Tree (CART) and the ensemble learning method of Gra-
dient Boosted Regression Trees (GBRT) can achieve better ranks among
four regression methods under evaluation; the sampling strategy in the
rank-based approach is useful to save the cost of sampling configurations;
the measurement, i.e., rank difference correlates with the relative error
in several evaluation scenarios.

Keywords: Regression Methods · Performance Prediction · Sampling ·
Software Configurations.

1 Introduction

A highly configurable system integrates many configuration options (i.e., a con-
figurable feature of a system) to provide choices for system administrators and
end users. For instance, a web server, such as Apache Http Server, supports
the configuration of server performance to adapt to the resource limit or par-
ticular hardware platforms. Given a configurable system, many configurations
may result in performance issues, e.g., the resource consumption of a compiler
or the response time of a web server [14]. Due to the large search space of ex-
amining all configurations, it is expensive to find out the optimal configuration
for a complicated system [8]. A highly configurable system contains numerous
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configuration options; in a large configurable system, even examining one con-
figuration may be time-consuming, e.g., deploying and rebooting a web server.
This makes manually examining all configurations impossible.

Existing studies have introduced machine learning methods to predict the
performance of a configuration [6,14]. The predicted performance of a configu-
ration serves as a reference to the user. This prediction can be used to assist
the choice of configurations. A general way of performance prediction is to use
a regression method to approximate an exact performance value. Such a re-
gression method evaluates the predicted performance with the relative error of
performance [14,15,9,8,16,10]. The Classification And Regression Tree (CART)
is viewed as one of the state-of-the-art methods for the regression on performance
prediction [15,10]. An ideal result is that the regression method can predict per-
formance for all configurations. However, the user of performance prediction
may not care about the performance of all the configurations. Instead, choosing
a configuration with the best performance is practical. Nair et al. [8] revisited
the goal of performance prediction: getting the (near) optimal configuration for
users. Therefore, the original regression problem is treated as a ranking prob-
lem: ranking configurations based on their predicted performance and choosing
a “good” configuration rather than predicting performance for all configurations.
Such a method is called a rank-based approach. A rank-based approach evalu-
ates the result with the rank difference, which is defined as the actual rank for
a configuration that is predicted as the best.

The study by Nair et al. [8] also revealed an important problem of perfor-
mance prediction, i.e., the number of sampled configurations for machine learn-
ing. A user cannot collect many configurations with known performance since
examining the actual performance of configurations is costly. Nair et al. [8] used
an iterative sampling method to reduce the number of sampled configurations
in the rank-based approach. This sampling method is considered to shorten the
cost of sampling configurations in real-world applications.

In this paper, we conducted a comparative study on the rank-based approach
of configurable systems with four regression methods, including Classification
And Regression Tree (CART), Support Vector Regression (SVR), Gaussian Pro-
cess Regression (GPR), and Gradient Boosted Regression Trees (GBRT). Meth-
ods in the study are compared on 21 evaluation scenarios of 16 real-world con-
figurable systems. We designed three Research Questions (RQs) to investigate
the impacts of different methods on the rank-based approach. In the study, we
evaluated the result of each regression method via learning a model from known
configurations and measured the result with the rank difference and the Mean
Magnitude of Relative Error (MMRE). Each experiment is repeated for 50 times
to reduce the disturbance of randomness. We find that among four regression
methods under evaluation, the decision tree method CART and the ensemble
learning method GBRT can achieve better ranks while SVR and GPR can save
more sampled configurations; the sampling strategy in the rank-based approach
is useful to the reduction of sampled configurations; the measurement, i.e., rank
difference correlates with the relative error in several evaluation scenarios.
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This paper makes the following major contributions:

– We compared four different regression methods for the problem of perfor-
mance ranking of configurable systems on 21 evaluation scenarios of 16 real-
world systems.

– We empirically studied the saved cost of sampling configurations and the
correlation between evaluation measurements.

The rest of this paper is organized as follows. Section 2 presents the back-
ground of this study. Section 3 shows the study setup, including three research
questions and the data preparation. Section 4 describes the results of our com-
parative study. Section 5 lists the threats to the validity. Section 6 presents the
related work and Section 7 concludes.

2 Background and Motivation

Accurately predicting the performance of configurations is challenging due to
the time cost of sampling and the accuracy of building performance models.

2.1 Problem Formalization

In this paper, we followed Nair et al. [8] to adopt the rank-based approach. In
this approach, a regression model is learned from a training set of configurations
and then is used to predict the performance for each configuration in the test
set. The rank-based approach sorts all configurations in the test set in terms
of the predicted performance. We call the sorting results a predicted sequence,
denoted as ps; let psk denote the top-k configurations in ps.

Let X be the search space of all configurations in a dataset. Denoting the
number of configuration options as n and one configuration as x, we can define a
configurable option in a configuration as xi and x = {x1, x2, ..., xn}. The domain
of xi is defined as D(xi). Thus X ⊆ D(x1)×D(x2)× ...×D(xn). Let perf(x) be
the performance of a configuration x. Then we denote the actual performance of
x as perfa(x) and the predicted performance that is calculated by a regression
method as perfp(x).

Previous studies of performance prediction generally employs the Mean Mag-
nitude of Relative Error (MMRE) to evaluate the accuracy of performance pre-
diction [14,15]. MMRE is defined as follow,

MMRE =
1

n

∑
x∈X

|perfa(x)− perfp(x)|
perfa(x)

Nair et al. [8] introduced the rank difference to evaluate the actual rank of
configurations that are predictively ranked as the top. The rank difference can
be defined as the minimum of actual rank values of the top-k configurations, i.e.,
MAR(k). The rank difference MAR(k) can be used to pick a configuration out
from the predicted sequence. We use MAR(k) to evaluate the ability of ranking
configurations to the top of the predicted sequence.
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Fig. 1. Overview of the rank-based approach.

2.2 Rank-based Approach

The state-of-the-art approach to solve the ranking problem of software config-
urations is called the rank-based approach by Nair et al. [8]. They considered
ranking as the ultimate goal of performance prediction and claimed that users
concerned ranks rather than exact performance. They adopted a rank-based sam-
pling method to reduce the number of training samples for building regression
models. To evaluate the ranking deviation of a configuration, they introduced a
measurement rank difference, which means the rank distance between the pre-
dicted rank and the actual rank of a configuration. We denote a predicted rank
as rankp(x) and an actual rank as ranka(x).

RD(x) = |ranka(x)− rankp(x)|

Fig. 1 shows the overview of the rank-based approach by Nair et al. [8]. The
rank-based approach employs an iterative sampling strategy to collect a training
set. At the beginning of sampling, they randomly select a certain number of
samples from the training pool as the training set. The training set is used to
build a regression model and to predict the performance on the validation pool.
Then, the mean of rank differences RD is calculated for all configurations to
decide whether the iterative sampling process terminates. Once the mean RD
continually rises for a pre-defined number of times, the iteration ends. Otherwise,
a new sampled configuration is added into the training set from the training pool.
Finally, a regression model is learned from the training set and is used to predict
and rank the test pool. The result we get after ranking is called the predicted
sequence of the test pool.
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2.3 Motivation

Highly configurable systems are common in our daily lives. A software usually
contains a large number of configuration options. For instance, Project lrzip is
a compression software for large files. As for performance related configuration
options, we can identify 19 features, which lead to 432 configurations [13]. A user
could tune these configuration options to change the performance, namely the
compression time in Project lrzip. Rich choices of configuration can facilitate the
functions of systems, but may hide faults and performance issues [14,18,16,17].
Due to the large number of configurations, manual examination on all configura-
tions is arduous. Thus, it is feasible to predict the performance for configurations
with unknown performance via machine learning algorithms[6].

Learning a regression model requires sampled configurations, which are se-
lected by users and examined by deploying the system with the configurations.
However, sampling is time-consuming. Existing studies have proposed several
sampling strategies to reduce the number of sampled configurations [14,12,20,9].
In this paper, we expect to evaluate the cost of learning a regression model, i.e.,
the number of configurations that contain known performance.

There are many regression methods in machine learning. The CART serves
as the state-of-the-art method in performance prediction [6,12,20,10,9,8,16]. In
this paper, we expect to find out which regression method is the best on perfor-
mance ranking. Can the CART reduce the number of configurations with known
performance in learning regression models? In this paper, we comprehensively
compare the result of performance ranking with four regression methods.

3 Study Setup

We describe the data preparation, four regression methods, and three RQs in
this section.

3.1 Dataset Preparation and Evaluation Setup

In this paper, we empirically evaluate the performance ranking on 16 subject
systems with 21 evaluation scenarios. A evaluation scenario is a subject system
deployed on a particular running environment.

One subject system may contain one or more evaluation scenarios. For in-
stance, wc-6d-c1-obj1 and wc-6d-c1-obj2 are two evaluation scenarios that use
the same subject system and hardware environments, but different performance
indicators: wc-6d-c1-obj1 measures performance with throughput while wc-6d-
c1-obj2 measures performance with latency [7]. Table 1 presents the details of
21 evaluation scenarios in our study.

The performance of configurable systems can be measured with different
indicators. For example, the performance is measured by throughput in wc-6d-c1-
obj1. That is, the larger the value is, the better the performance is. In BerkeleyC,
the performance is defined as the response time. For the sake of unification, we
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Table 1. Configurations of 21 evaluation scenarios in 16 subject systems.

Scenario Options Configurations Performance Ref.
AJStats 19 30,256 analysis time [13]
Apache 9 192 max response rate [13]
BerkeleyC 18 2,560 response time [13]
BerkeleyJ 26 180 response time [13]
clasp 19 700 solving time [13]
Dune 11 2,304 solving time [8]
HSMGP_num 14 3,456 average time [8]
lrzip 19 432 compression time [8]
noc 4 259 runtime [21]
snw 3 206 throughput [21]
spear 14 16,384 solving time [13]
SQL 39 4,553 response time [13]
wc+rs-3d-c4-obj1 3 196 throughput [7]
wc+rs-3d-c4-obj2 3 196 latency [7]
wc-6d-c1-obj1 6 2,880 throughput [7]
wc-6d-c1-obj2 6 2,880 latency [7]
wc-c1-3d-c1-obj1 3 1,343 throughput [7]
wc-c1-3d-c1-obj2 3 1,343 latency [7]
WGet 16 188 main memory [8]
x264 16 2,047 encoding time [13]
XZ 16 1,078 execution time [16]

pre-processed the raw data. For instance, we transferred the throughput value
tp in wc-6d-c1-obj1 into 100/tp.

In our study, the whole dataset is randomly divided into three parts, including
the training pool, the test pool, and the validation pool, which respectively
account for 40%, 40%, and 20% of the total number of configurations. Each
regression method is evaluated on the same division of the dataset and with the
same random seed. The experiment is repeatedly run for 50 times to count the
average.

We evaluate the results with two measurements, MAR(k) and MMRE(k),
which denote the minimum of actual ranks for the top-k ranking and the mean
magnitude of relative errors of the performance prediction for the top-k ranking,
respectively.

We also measure the correlation between MAR(k) and MMRE(k) with the
Pearson correlation coefficient. We repeated running each experiment for fifty
times and collected each 50 pairs of MAR(k) and MMRE(k). Let Y and X be
the vectors of MAR(k) and MMRE(k) values. Then the Pearson correlation
coefficient between MAR(k) and MMRE(k) is calculated as follows,

ρ(X,Y ) =
cov(X,Y )

σXσY
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where ρ(X,Y ) and cov(X,Y ) are the correlation coefficient and the covariance
between X and Y , σX and σY are the standard deviation of X and Y , respec-
tively.

Our experiment is implemented with Python 3.7.3. We use the Python pack-
age scikit-learn to build regression models and to predict the performance of
configurations. Our running environment is a PC with Intel Core i7 Quad CPU
2.60GHz and 8GB RAM memory.

3.2 Regression Methods

In this paper, we selected four regression methods: three basic regression meth-
ods, Classification and regression tree (CART), Support Vector Regression (SVR),
and Gaussian Process Regression (GPR), and one ensemble method, Gradient
Boosted Regression Trees (GBRT). In our evaluation, we do not assume that
there is a specific function between the performance and configurations of a
scenario.

CART is a classic decision tree algorithm, which builds a classification or
regression model within a tree structure [1]. The decision tree iteratively parti-
tions into branches to generate a decision rule. Leaf nodes of the tree contain
the prediction result. SVR is the regression model of the support vector ma-
chine algorithm [2]. SVR uses a hyperplane to discriminate samples and sets a
tolerance for the loss function. In our study, we chose the Radial Basis Func-
tion (RBF) as the kernel algorithm of SVR because we assume configuration
data are non-linear. GPR is a non-parametric regression model that uses prob-
ability distribution to predict results [11]. We also use the RBF as the kernel.
GBRT is an ensemble learning algorithm of multiple decision trees, i.e., CART
[3]. GBRT uses multiple weak learners to fit a strong learner. GBRT iteratively
finds decision trees to turn down the value of loss functions.

3.3 Research Questions

Our experiments are designed to compare the ranking ability of four different re-
gression methods. We aim at investigate the performance ranking via answering
three RQs:

– RQ1. Which regression method can achieve better ranking for the perfor-
mance ranking?

– RQ2. How many configurations are sampled in the rank-based performance
ranking?

– RQ3. Does the rank difference in performance ranking correlate with the
relative error in performance prediction?

In RQ1, we check which regression method can perform well in the per-
formance ranking of configurable systems. The CART method is considered as
a state-of-the-art method [8]. Then what is the effectiveness of other typical
regression methods? We plan to evaluate the four regression methods on the
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performance ranking via two measurements, the minimum of actual ranks and
the relative error.

In RQ2, we aim at evaluating the number of sampled configurations for learn-
ing a rank-based model. Nair et al. [8] employed an iterative strategy to sample
configurations for the model learning. We focused on the number of sampled
ones by different regression methods.

In RQ3, we use the Pearson correlation coefficient to measure the relevance
between two measurements. We collect results from fifty repeated experiments
and calculate the correlation between the minimum of actual ranksMAR(k) and
the mean magnitude of relative error MMRE(k). The correction is evaluated
by checking k = 1, k = 5, and k = 10, respectively, i.e., the measurements of
top-1, top-5, and top-10.

4 Comparative Study

We conducted a comparative study on using four regression methods in the
performance ranking. These regression methods are evaluated with experiments
on 21 evaluation scenarios of 16 subject systems.

4.1 RQ1. Which regression method can achieve better ranking for
the performance ranking?

We followed the rank-based approach by Nair et al. [8] to use an iterative strat-
egy of sampling. This strategy samples the training set from a given training
pool and then a regression model is learned from the training set. All configu-
rations in a validation pool are used to validate the prediction by the learned
regression model. The sampling process repeats until a pre-defined threshold
reaches. In the training pool, configurations that are not sampled can be viewed
as configurations without known performance. Then the sampling strategy can
save the effort of examining the actual performance of configurations. If the
sampling strategy terminates, the learned regression model is used to predicted
performance for all configurations in the test set. According to the predicted
performance, configurations in the test set are sorted and measured with two
defined measurements MAR(k) and MMRE(k) in Section 3.1.

Table 2 shows the minimum of actual ranks, i.e., MAR(k), on 21 evalua-
tion scenarios of four regression methods, CART, SVR, GBRT, and GPR. We
compared the minimum of actual ranks for top-1, top-5, and top-10 configura-
tions in the predicted sequence.1 As shown in Table 2, CART can obtain the
best rank in 7 out of 21 evaluation scenarios for top-10 configurations; GBRT
can obtain the best rank in 11 scenarios; SVR and GPR obtain the best rank
in one and two scenarios, respectively. CART and its enhanced method GBRT
could achieve better rank than the other methods. The difference among four

1 Ranks in the experiment are zero-based; that is, the MAR value of the best config-
uration is zero.
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Table 2. Minimum of actual ranks on 21 evaluation scenarios of 4 regression methods

Scenario Top-1 Top-5 Top-10
CART SVR GBRT GPR CART SVR GBRT GPR CART SVR GBRT GPR

AJStats 4381.56 4159.683920.209611.40 949.621985.461219.687630.66 739.48 1254.20689.626514.96
Apache 5.52 6.54 2.66 4.78 1.02 1.30 0.32 0.32 0.36 0.50 0.14 0.18
BerkeleyC 122.70 161.82 83.14 110.52 35.34 73.08 47.18 39.10 24.82 49.38 29.98 18.54
BerkeleyJ 11.30 15.86 10.92 17.34 3.56 4.60 3.36 7.48 1.52 2.68 1.54 2.98
clasp 17.08 38.84 6.20 54.34 4.86 16.80 1.64 21.64 1.76 8.22 0.46 14.98
Dune 161.74 87.06 110.10 276.38 55.52 27.42 31.22 119.92 37.88 11.80 18.58 83.52
HSMGP_num 88.42 29.46 14.60 71.92 23.92 10.48 2.28 16.62 12.10 7.58 1.26 13.08
lrzip 10.80 35.34 13.68 27.80 3.16 19.72 3.30 8.80 1.42 11.76 1.62 6.60
noc 6.50 3.60 1.66 27.18 0.80 1.46 0.04 2.24 0.18 0.94 0.02 1.86
snw 3.66 4.32 1.30 20.04 0.52 0.40 0.12 3.58 0.32 0.18 0.00 2.02
spear 1072.441360.02 1237.38 1335.10 246.9 776.60 646.78 549.14 204.34 651.74 444.7 378.26
SQL 749.38 589.60 590.74 682.52 288.48 237.08 212.36 271.84 123.34 155.80 106.22 128.72
wc+rs-3d-c4-obj1 13.94 26.94 5.74 21.92 2.66 6.24 1.86 5.94 0.84 4.08 0.16 3.56
wc+rs-3d-c4-obj2 4.56 16.08 18.74 49.52 1.00 6.40 4.78 23.36 0.42 3.84 1.92 10.06
wc-6d-c1-obj1 268.60 395.60 261.06 499.56 56.20 150.82 103.18 339.24 26.28 94.72 45.70 201.44
wc-6d-c1-obj2 80.58 225.50 209.58 395.46 34.42 106.80 116.88 296.38 18.78 86.10 83.56 247.50
wc-c1-3d-c1-obj1 56.36 102.68 31.74 494.58 16.26 4.58 5.12 440.70 7.88 2.20 1.70 400.86
wc-c1-3d-c1-obj2 82.46 94.84 64.62 481.22 16.20 18.58 16.02 450.64 11.38 8.62 8.18 380.94
WGet 25.48 30.92 26.38 47.50 7.34 8.64 6.96 23.04 3.70 4.06 3.78 11.36
x264 92.42 72.06 17.60 300.90 25.84 16.00 3.28 129.32 14.22 9.72 1.82 86.94
XZ 86.84 93.60 134.84 85.04 17.14 27.10 37.88 26.26 11.52 14.56 18.46 10.98

regression methods is not slight. For instance, in top-10 of Scenario AJStats,
the rank of GBRT is 689.62 while the rank of GPR is 6514.96; in top-10 of Sce-
nario XZ, the rank of GBRT is 18.46 while the rank of GPR is 10.98. In top-10,
four regression methods can nearly rank the actually optimal configuration to
the top for several evaluation scenarios, e.g., Apache, BerkeleyJ, noc, snw, and
wc+rs-3d-c4-obj1.

We also present the results of MMRE in Table 3. In top-10, CART reaches
the best MMRE in 7/21 evaluation scenarios; SVR can obtain the best MMRE
values in 3/21 scenarios; GBRT achieves the best MMRE in 11/21 scenarios;
GPR cannot obtain the best MMRE in these scenarios.

We consider the results across Table 2 and Table 3. For Scenario XZ, CART
performs the best for all MMRE values in Table 3 while GPR performs the best
for top-1 and top-10 for MAR values in Table 2. This observation reveals that the
MAR value may not correlate with the MMRE value. We study such correlation
in Section 4.3.

4.2 RQ2. How many configurations are sampled in the rank-based
performance ranking?

The iterative strategy of sampling in the rank-based approach [8] can save the
effort of examining actual performance of configurations. In RQ2, we evaluate
the sampling via the number of sampled configurations, denoted as#samples. In
the rank-based approach, #samples counts all configurations that have known
actual performance, including both the training set and the validation pool.
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Table 3. Mean magnitude of relative errors on 21 evaluation scenarios of 4 regression
methods

Project Top-1 Top-5 Top-10
CART SVR GBRT GPR CART SVRGBRT GPR CART SVRGBRT GPR

AJStats 0.02 0.02 0.03 0.85 0.02 0.02 0.03 0.84 0.02 0.02 0.03 0.84
Apache 0.10 0.76 0.06 0.14 0.09 0.69 0.05 0.11 0.09 0.63 0.05 0.11
BerkeleyC 0.15 1.08 0.98 4.86 0.15 1.29 0.91 3.75 0.15 1.36 0.83 3.15
BerkeleyJ 0.06 0.47 0.06 0.65 0.05 0.46 0.05 0.59 0.05 0.45 0.04 0.53
clasp 0.05 0.41 0.03 0.29 0.06 0.40 0.04 0.28 0.06 0.40 0.04 0.28
Dune 0.18 0.40 0.14 1.00 0.18 0.40 0.13 0.89 0.18 0.38 0.12 0.83
HSMGP_num 0.19 1.67 0.16 1.59 0.21 1.43 0.14 1.35 0.22 1.31 0.14 1.20
lrzip 0.09 2.04 0.69 2.52 0.10 1.97 0.57 1.92 0.10 1.94 0.47 1.47
noc 0.03 0.11 0.02 0.20 0.03 0.09 0.02 0.11 0.04 0.08 0.02 0.09
snw 0.08 0.38 0.06 3.04 0.07 0.31 0.06 1.90 0.07 0.26 0.05 1.26
spear 0.46 27.68 8.69 9.15 0.51 28.61 8.16 6.02 0.50 28.36 8.37 4.84
SQL 0.08 0.04 0.08 0.99 0.08 0.04 0.08 0.99 0.08 0.04 0.08 0.99
wc+rs-3d-c4-obj1 0.28 0.44 0.24 3345.07 0.26 0.49 0.27 1937.15 0.24 0.49 0.24 1245.09
wc+rs-3d-c4-obj2 0.12 165.99108.941997.79 0.11 93.29107.111469.57 0.15 76.28 67.58 1638.20
wc-6d-c1-obj1 0.35 0.83 1.27 450.99 0.35 0.74 1.19 407.35 0.34 0.77 1.10 380.17
wc-6d-c1-obj2 0.17 14.49 27.16 504.66 0.20 11.07 21.70 348.91 0.20 10.22 20.78 334.28
wc-c1-3d-c1-obj1 0.08 0.07 0.07 4.53 0.07 0.09 0.06 4.12 0.07 0.10 0.06 3.84
wc-c1-3d-c1-obj2 0.10 0.16 0.08 8.59 0.09 0.21 0.09 8.13 0.10 0.22 0.08 7.75
WGet 0.04 0.08 0.14 0.86 0.07 0.05 0.11 0.83 0.07 0.05 0.09 0.81
x264 0.07 0.16 0.04 0.74 0.07 0.17 0.04 0.73 0.07 0.16 0.04 0.72
XZ 0.59 2.78 1.33 0.85 0.64 3.12 1.25 0.86 0.67 3.00 1.08 0.83

Table 4 shows the number of sampled configurations by four regression methods.
For the sake of space, we only show the MAR results of top-10 and remove the
MMRE results.

As presented in Table 4, iterative sampling can save nearly up to half of
samples compared with the No sampling method, especially for projects with
a large number of configurations like Projects AJStats and spear. As for four
regression methods, SVR and GPR can respectively obtain the least samples in
12 and 7 scenarios. The difference between CART and GBRT is slight: both have
relatively more samples than the other two methods and can achieve the least
samples in only one scenario. For instance, in Scenario wc-6d-c1-obj1, CART has
617.66 samples on average and its MAR is 26.28. SVR and GPR have 606.34
and 602.28 samples on average but their MARs are 94.72 and 201.44, which are
much higher than the MAR of the CART.

4.3 RQ3. Does the rank difference in performance ranking correlate
with the relative error in performance prediction?

As mentioned in Section 4.3, the rank-based approach can be measured with
MAR and MMRE. We investigate whether there exists correlation between the
values of MAR and MMRE.
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Table 4. Number of sampled configurations for top-10 results on 21 evaluation scenar-
ios by four regression methods. No sampling denotes the number of all configurations
without sampling.

Project
Iteratively sampling No samplingCART SVR GBRT GPR

MAR #Samples MAR #Samples MAR #Samples MAR #Samples #Samples
AJStats 739.48 6088.48 1254.20 6080.46 689.62 6089.28 6514.96 6073.56 12102
Apache 0.36 73.18 0.50 64.28 0.14 69.32 0.18 70.40 76
BerkeleyC 24.82 557.36 49.38 546.32 29.98 561.08 18.54 562.20 1024
BerkeleyJ 1.52 68.46 2.68 62.84 1.54 64.72 2.98 59.34 72
clasp 1.76 190.26 8.22 171.56 0.46 182.60 14.98 181.60 280
Dune 37.88 500.66 11.80 495.08 18.58 497.22 83.52 490.98 921
HSMGP_num 12.10 733.48 7.58 734.86 1.26 737.52 13.08 752.16 1382
lrzip 1.42 124.98 11.76 114.86 1.62 129.30 6.60 121.96 172
noc 0.18 91.68 0.94 80.36 0.02 89.56 1.86 82.42 103
snw 0.32 76.46 0.18 65.38 0.00 74.94 2.02 68.74 82
spear 204.34 3310.18 651.74 3311.72 444.70 3308.46 378.26 3327.34 6553
SQL 123.34 943.42 155.80 934.00 106.22 949.52 128.72 935.24 1821
wc+rs-3d-c4-obj1 0.84 73.56 4.08 62.32 0.16 75.64 3.56 62.62 78
wc+rs-3d-c4-obj2 0.42 71.24 3.84 62.56 1.92 68.90 10.06 62.66 78
wc-6d-c1-obj1 26.28 617.66 94.72 606.34 45.70 616.84 201.44 602.28 1152
wc-6d-c1-obj2 18.78 630.96 86.10 601.92 83.56 607.18 247.50 601.94 1152
wc-c1-3d-c1-obj1 7.88 308.08 2.20 293.34 1.70 313.80 400.86 297.22 537
wc-c1-3d-c1-obj2 11.38 305.36 8.62 296.36 8.18 307.78 380.94 295.26 537
WGet 3.70 74.42 4.06 62.32 3.78 67.06 11.36 60.36 75
x264 14.22 453.94 9.72 427.26 1.82 468.04 86.94 432.38 818
XZ 11.52 248.98 14.56 250.82 18.46 249.54 10.98 243.82 431

Each experiment repeated for 50 individual runs. Then we collected the val-
ues of MAR and MMRE and calculated the Pearson correlation coefficient. The
absolute value of the coefficient shows the strength of the correlation. A positive
value means that one measurement increases with the other; a negative value
means that one measurement increases when the other decreases. Table 5 shows
the Pearson correlation coefficient between MAR and MMRE for the top rank-
ings. We labeled the significant values (p-value<0.05) with ∗ and highlighted
the values whose absolute values of correlation coefficients are higher than 0.6,
which means strong correlation between MAR and MMRE.

As presented in Table 5, the top-1 configuration has stronger correlation than
the top-5 and top-10 configurations. The more configurations we take from pre-
dicted sequences, the less number of scenarios of strong correlation we would
have. For instance, CART has five scenarios of strong correlation in top-1 but
only has two and one in top-5 and top-10. In top-1, CART, SVR, GBRT, and
GPR have 5, 4, 6, and 5 scenarios of strong correlation out of 21 evaluation sce-
narios, respectively. It means MAR and MMRE may not have strong correlation
for regression methods. Besides, SVR has a negative correlation between MAR
and MMRE for most of significant scenarios, which is different from the other
three regression methods.



12 Y. Chen et al.

Table 5. Pearson correlation coefficient on 21 scenarios of four regression methods.
The mark * denotes the coefficient has p-value < 0.05.

Project Top-1 Top-5 Top-10
CART SVR GBRT GPR CART SVR GBRT GPR CART SVR GBRT GPR

AJStats 0.1929 -0.3878* 0.8760* 0.3400* 0.2882* -0.3500* 0.6025* 0.4193* 0.1209 -0.1834 0.3132* 0.5578*
Apache 0.2363 -0.5089* 0.3028* 0.7257* 0.2577 -0.2406 0.1390 0.4475* 0.1507 -0.1594 0.1255 0.5294*
BerkeleyC 0.6092* -0.2703 0.0192 -0.2037 0.2650 -0.2635 0.0769 -0.0721 -0.0761 -0.2365 0.0526 -0.0594
BerkeleyJ 0.4720* -0.5279* 0.7545* 0.3710* 0.3415* -0.5902* 0.3960* 0.3766* 0.1297 -0.5623* 0.1247 0.3543*
clasp 0.7202*-0.7174* 0.0626 0.8735* 0.6506* -0.5339* 0.1743 0.7088* 0.5672* -0.4681* 0.2322 0.6332*
Dune 0.3255* -0.9613*0.7844* 0.2381 0.4888* -0.6208* 0.2781 0.3103* 0.6569* -0.3618* 0.1407 0.4032*
HSMGP_num -0.0163 -0.8033* 0.2286 -0.1414 0.4586* -0.5325* 0.1049 -0.0743 0.4032* -0.5314* -0.1091 -0.0395
lrzip 0.6610* -0.4326* 0.3091* -0.0281 0.2278 -0.2810* 0.2769 0.1778 0.2602 -0.2354 0.1424 0.1828
noc 0.6121* -0.2536 0.0248 0.8451* 0.5143* -0.1117 N/A 0.8481* 0.2964* -0.1327 N/A 0.8905*
snw 0.2423 -0.5291* -0.2146 -0.0768 0.1591 -0.3073* 0.0480 0.2994* 0.0847 -0.0889 N/A 0.1206
spear 0.2691 -0.2080 -0.0716 -0.5949* -0.1824 -0.1299 -0.0437 -0.4684* -0.2601 -0.1335 -0.1131 -0.4651*
SQL 0.1724 0.2529 0.8438* 0.1353 0.1438 -0.1746 0.6293* -0.0827 0.1952 -0.1272 0.5459* 0.2039
wc+rs-3d-c4-obj1 0.5080* -0.2223 0.3822* -0.209 0.5200* -0.6263* 0.4198* -0.0922 0.5343* -0.5536* 0.0040 -0.1581
wc+rs-3d-c4-obj2 0.6604* -0.4572* -0.2554 -0.6365* 0.6475* -0.3564* -0.1413 -0.5552* 0.4188* -0.3014* -0.0684 -0.2407
wc-6d-c1-obj1 0.2732 -0.4223* 0.1438 -0.1919 0.2342 -0.3863* 0.2297 -0.1120 -0.0327 -0.2669 0.0694 -0.0013
wc-6d-c1-obj2 0.4586* -0.3422* -0.2649 -0.5077* 0.244 -0.2266 -0.184 -0.4362* 0.4112* -0.2421 -0.1593 -0.4416*
wc-c1-3d-c1-obj1 0.3199* 0.3387* 0.2233 -0.0751 0.0664 -0.3066* 0.0856 0.2208 0.3260* -0.3595* -0.0887 0.3529*
wc-c1-3d-c1-obj2 0.1695 -0.3289* 0.812* -0.5458* 0.2465 -0.3552* 0.5888* -0.4455* -0.0588 -0.3955* 0.7149* -0.2672
WGet 0.3138* 0.6341* 0.6819* 0.3722* 0.3934* -0.2516 0.3587* 0.2987* 0.4472* -0.0445 0.3907* 0.1540
x264 0.2806* -0.5289* 0.4741* 0.6381* 0.5089* -0.3099* 0.4471* 0.5058* 0.3811* -0.3079* 0.3384* 0.4681*
XZ -0.0780 -0.3862* -0.2468 -0.1039 0.3236* -0.5986* -0.1742 0.0054 0.2098 -0.6915* -0.1401 -0.1965

Summary. From three RQs, we can understand the reason that many exist-
ing studies used CART as their regression method in performance prediction of
software configurations. However, our study shows that all four regression meth-
ods can behave well in several evaluation scenarios. The rank-based approach
for the performance ranking can be further improved to reduce the ranking dif-
ference and the number of sampled configurations.

5 Threats to Validity

We discuss threats to the validity to our comparative study in the following three
dimensions.

Threats to construct validity. Our experiments used four regression meth-
ods to check the impact on performance ranking. It is feasible to conduct a large
experiment via involving other existing regression methods. The dataset in our
study is selected from existing work [13,8,21,7,16]. All projects in the dataset
are real-world configurable systems. However, selecting the projects may lead to
the bias of favoring specific application domains. This may be a threat to the
project selection in the experiment.

Threats to internal validity. In the experiment, we repeated individual
runs for 50 times to reduce the randomness of the dataset division, i.e., dividing
a dataset into three subsets, the training pool, the validation pool, and the test
pool. The 50 times of repetitive experiments is used to avoid the influence of
randomness. However, the randomness cannot be totally removed.
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Threats to external validity. We compared four regression methods in
the study. We do not claim that the comparative results can be generalized to
other projects or to other regression methods. Considering the large number of
existing configurable systems, projects and regression methods can be viewed as
a sample of performance ranking on real-world systems.

6 Related Work

In this paper, we studied the performance ranking with four regression methods.
Previous studies on the performance of configurable systems generally focused
on sampling methods and learning methods. We present the related work as
follows.

Guo et al. [6] used the CART method to predict the performance of config-
urations. Their empirical results show that the method can reach a prediction
accuracy of 94% on average based on small random samples. They claimed that
prediction accuracy would robustly increase with the increasing of the sample
size. Valov et al. [15] compared the predicting accuracy of four typical regression
methods. They selected regressions methods, including CART, SVM, random
forests, and bagging. Their results show that bagging does better in performance
prediction when all configurations are evaluated with the relative errors. Sieg-
mund et al. [13] proposed an approach that learns a performance-influence model
for a configurable system. Their approach can flexibly combine both binary and
numeric configuration options. Sarkar et al. [12] compared two sampling strate-
gies, progressive sampling and projective sampling, with the prediction accuracy
and the measurement effort and found that the projective sampling is better than
the progressive sampling. Gu et al. [4] proposed a multi-objective optimization
method for configuration sampling. This method considers both the number of
configurations in the training set and the rank difference in the test set.

Zhang et al. [20] proposed a Fourier learning method to learn performance
functions for configurable systems. They showed that this method can generate
performance predictions with guaranteed accuracy at the confidence level. Nair
et al. [9] proposed a fast spectral learner and three new sampling techniques.
They conducted experiments on six real-world configurable software systems.
Xuan et al. [19] designed a method genetic configuration sampling, which used
a genetic algorithm to reduce the number of sampled configurations to reveal
the internal system faults, which result in system crashes. Gu et al. [5] learned a
predictive model to identify whether the root cause of crashing faults resides in
the lines of stack traces. This model is built on the features of stack traces and
faulty source code.

The rank-based approach by Nair et al. [8] reconsidered the problem of per-
formance prediction and refined the problem as a ranking problem. Their work
first used the rank difference instead of predicting accuracy as the measure-
ment in the evaluation. They also proposed an iterative sampling strategy and
conducted experiments on nine real-world systems to compare with two state-
of-the-art residual-based approaches. The results show that the rank-based ap-
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proach uses fewer sampled configurations than residual-based approaches and
the rank-based approach is effective to find out the optimal configurations for
most systems under evaluation.

7 Conclusions

It is challenging to find the optimum among numerous configurations for highly
configurable systems. The rank-based approach aims to rank the optimal con-
figurations to the top and to assist the decision by system administrators and
users. To find out which regression method can rank the best configuration to the
top, we compare four different regression methods in the rank-based approach.
We conducted experiments on 21 evaluation scenarios of 16 real-world systems.
Empirical results show that the decision tree method CART and the ensemble
learning method GBRT can achieve better ranks while SVR can save more sam-
pled configurations in the rank-based approach. Meanwhile, the results indicate
that the minimum of actual ranks may not strongly correlate with the relative
error.

In future work, we plan to design a new sampling strategy to maintain the
predicting accuracy and reduce the number of measurements for training regres-
sion models. We also want to check other sampling strategies for the rank-based
approach in the future.
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