
A Random Walk Based Algorithm for
Structural Test Case Generation

Jifeng Xuan1, He Jiang2, Zhilei Ren1, Yan Hu2, Zhongxuan Luo1, 2

1 School of Mathematical Sciences
Dalian University of Technology

Dalian, China
{xuan, ren}@mail.dlut.edu.cn

2 School of Software
Dalian University of Technology

Dalian, China
{jianghe, huyan, zxluo}@dlut.edu.cn

Abstract—Structural testing is a significant and expensive process
in software development. By converting test data generation into
an optimization problem, search-based software testing is one of
the key technologies of automated test case generation. Motivated
by the success of random walk in solving the satisfiability
problem (SAT), we proposed a random walk based algorithm
(WalkTest) to solve structural test case generation problem.
WalkTest provides a framework, which iteratively calls random
walk operator to search the optimal solutions. In order to
improve search efficiency, we sorted the test goals with the costs
of solutions completely instead of traditional dependence analysis
from control flow graph. Experimental results on the condition-
decision coverage demonstrated that WalkTest achieves better
performance than existing algorithms (random test and tabu
search) in terms of running time and coverage rate.

Keywords-automatic test generation; condition-decision
coverage; random walk; structural testing

I. INTRODUCTION
Software testing is an expensive and time-consuming

process occupying about 50% resource of software
development cycle [1][25]. A main task of software testing is
to generate test cases to detect errors. As it is impossible to
execute a program exhaustively, the test coverage and
adequacy criterion are employed to measure the quality of
software testing by a fraction of test cases [2]. Structural testing
(white-box testing) generates test cases from the codes of a
program. According to different goals, the criterion of
structural testing provides distinct granularity, including
statement coverage, branch coverage, multiple-condition
coverage, and path coverage [2]. Among these coverage criteria,
statement coverage is easy to achieve since it only covers every
statement of a program; and branch coverage covers every
branch to ensure the correctness of basic structures in a
program. Some other criteria (e.g., path coverage) provide
stronger guarantee than branch coverage, but far more test
cases are necessary.

Search-based software testing is a dynamic approach for
automatic test case generation [3]. In contrast to traditional
static approach (symbolic execution), search-based software
testing can efficiently reduce the running time and space
requirement. The kernel of this search-based technology is to
convert the test data generation into an optimization problem

and to solve it with approximate optimization algorithms.
Miller & Spooner [4] firstly treated test case generation as an
optimization problem and used a hill-climbing algorithm on
float-point data in 1976; Korel [5] extended their work and
established a prototype of modern dynamic approaches in 1990.
Aside from these traditional optimization algorithms, numerous
meta-heuristic algorithms have received widespread research
interests in test case generation, including genetic algorithm by
Xanthakis, et al. [6] and Michael, et al. [7], simulated annealing
by Tracey, et al [8], scatter search by Sagarna & Lozano [9],
particle swarm optimization by Windisch, et al. [11],
estimation of distribution algorithms by Sagarna, et al. [21],
and tabu search by Díaz, et al. [10]. All these optimization
algorithms are applied to generate test cases collaborated with a
set of objective functions. An objective function is designed to
adapt to a test goal, which is usually defined as an element in
codes, such as a branch in branch coverage or a path in path
coverage. Some of objective functions are effective in the
application of test case generation, but are complex and hard to
understand or implement [10][16][20]. McMinn surveys the
objective functions of search-based testing in [3].

Search-based software testing is an approximate approach,
which usually searches test cases incorporated some
randomized mechanism. In random process, random walk is a
trajectory that consists of successive random steps [22].
Random walk has been applied in many fields of computer
science, including information retrieval [23], machine learning
[24], and constraint programming [13][14][15]. In constraint
programming, local search algorithms based on random walk
exhibits strong ability in approximate solving satisfiability
problem (SAT) and its variants [13][14]. Motivated by this fact,
we considered test case generation as random walk of test cases
and proposed a random walk based algorithm (called WalkTest)
to solve the automatic structural test case generation problem.

WalkTest iteratively calls a random walk operator to obtain
high quality solutions in a solution pool. Firstly, WalkTest
encodes solutions with Gray codes instead of natural binary
codes and converts the test goals into minimum objective
functions. Then, WalkTest selects and updates solutions based
on a probabilistic walk on the continuous search space of Gray
codes. After that, the test goals (objective functions) are sorted
by minimum cost rather than the dependence analysis from
control flow graph (CFG) to reduce the running time. Finally,

This work is partially supported by the Natural Science Foundation of
China under Grant No. 60805024, the National Research Foundation for the
Doctoral Program of Higher Education of China under Grant No.
20070141020.

583

WalkTest collects the statistics of coverage and test cases.
Experimental results on typical programs indicated that
WalkTest achieves a high coverage rate of structural testing
(condition-decision coverage) in less time than existing
algorithms (random test and tabu search). These results also
demonstrated that WalkTest was not sensitive to the values of
input parameters, especially in terms of running time.

The remainder of this paper is organized as follows. Section
II introduces structural test case generation and related works.
Section III describes WalkTest algorithm in detail, including
the framework, its local search operator, and the sorting
strategy of test goals. Experimental results are presented in
Section IV. Finally, Section V concludes this paper and
discusses the directions of future work.

II. SEARCH-BASED STRUCTURAL TESTING
Structural testing focuses on the implementation details of

program units. Among the coverage criteria of structural testing,
branch coverage (also known as decision coverage) is
discussed by most literatures [2][5][6][9][11]. This criterion
meets a requirement that every branch with conditions must be
executed at least once. A branch is one possible path in the
execution for a branch node, which is defined as some
continuous codes of a selection structure. Usually, one branch
consists of some conditions with connection of logical
operators. Fig. 1 illustrates an example of a fraction of codes
with two branches for an if statement. For the branches with
more than one condition, branch coverage cannot predicate the
satisfiability of every condition. Therefore, we choose
condition-decision coverage (C/D coverage) [7][10] as the
criterion to achieve the test cases for each conditions in this
paper.

Besides the requirement of branch coverage, C/D coverage
requests the execution of both TRUE and FALSE values in
every condition, i.e., every condition must be evaluated TRUE
or FALSE at least once for C/D coverage. Table I gives the
requirements of test case generation in C/D coverage for the
instance in Fig. 1. In addition to Line 1 and 2 for branch
coverage, C/D coverage is satisfied, if and only if all eight lines
are satisfied by a set of test cases. Moreover, if a test case has
been designed to satisfy Line 1 in Table I, Line 3, Line 5, and
Line 7 can be done simultaneously due to the logical inclusion
relationship of Line 1. Thus, this relationship between a branch
and its conditions leads to a reduction of test goals without loss
of test quality.

Under a coverage criterion, the test goals are transformed
into the value of objective functions and the optimal solutions
for these functions are transformed back into test cases in
search-based technology. For objective functions in test data
generation, a uniform approach is to design a minimum
function with nonnegative values [3][8]. In other words, the
conditions or conditional branches in codes are converted into
functions to indicate the coverage with the values at least zero.
The forms of objective functions depend on the search
strategies in different algorithms. We choose a prior and simple
set of objective functions described in [8] to perform WalkTest.
Table II presents the details of these functions in C++ language.
Every operator (logic operator, e.g., && or relation operator,

e.g., <) in test goals is uniformly defined as a piecewise
function. The value of this function equals to zero while the
logical expression is satisfied by a test case; otherwise, it
equals to a positive value to predicate the distance between the
current and optimal test cases. For example, a condition “a < b”
with operator “<” is defined as a function, which equals to zero,
if and only if a < b, or equals to a value of (b - a) +K. An
exception is the operator “logical negation” (i.e., “!” in C++
language), which is moved inwards and propagated over the
original expression rather than defining an extra function. For
unsatisfied logical expressions, the function values illustrate the
distance to the optimal solutions.

III. RANDOM WALK SEARCH
In this section, we present WalkTest for automated

structural test case generation in details: framework, random
walk operator, and sorting strategy.

Before the technical details of WalkTest, we give a brief
study on a classic program “triangle classifier”. This program
contains only 6 branch nodes, and well-known as a benchmark
for structural testing [19]. Fig. 2 shows the control flow graph
of “triangle classifier”. Close dependence exists among these
nodes while a test case is generated to cover some of them. For
example, Nodes 0, 2, 4, 5 must be covered as a precondition for
the condition “B==C” in Node 6. This dependence leads to two
difficulties. On one hand, there is no any direct relationship
between the conditions of Node 4 and the condition of Node 6.
Thus, during the process of search, Node 4 cannot provide a
direct guide for Node 6. On the other hand, Node 6, the last
node of dependence, cannot be easily covered by random test
(if the input variables are 32-bit integers, the coverage
probability of Node 6 is , i.e.,). For these
reasons, it is necessary to find a search algorithm to handle
such difficult nodes in test case generation.

32 32 31/ 2 2 / (2)× 652

1 if (A > 0 && B > 0 && C > 0)
2 target 1;
3 else
4 target 2;

Figure 1. An example of codes in a branch node. The first two lines and the
last two lines are both branches. In the first branch, there are three conditions
connected by logical and “&&” operators (C++ language).

TABLE I. REQUIREMENTS OF TEST CASE GENERATION IN C/D
COVERAGE

Line Requirements of test case generation
1 A > 0 && B > 0 && C > 0
2 ! (A > 0 && B > 0 && C > 0)
3 A > 0
4 ! (A > 0)
5 B > 0
6 ! (B > 0)
7 C > 0
8 ! (C > 0)

584

TABLE II. OBJECTIVE FUNCTIONS IN C++ LANGUAGE
Algorithm 1: Framework of WalkTest
Input: variable list L, times r and t,

solution pool P with size q, set of test goals T
Output: coverage rate R, test case set X
1 while R < 100% and the iteration times < r do
2 Initialize the solution pool P with q and i = 0 ;
3 Run random test for L
4 and update P for t times with best solutions;
5 while i < number of test goals do
6 Sort all test goals and select one test goal Ti ;
7 Search solutions for Ti by random walk and update P;
8 i = i + 1;
9 endwhile
10 endwhile
11 Calculate coverage rate R and test case set X;

Expression Objective function (fit ())
Boolean if TRUE then 0 else K
a == b if a == b then 0 else abs(a - b) + K
a != b if a != b then 0 else K
a < b if a < b then 0 else (a - b) + K

a <= b if a <= b then 0 else (a - b) + K
a && b min (fit (a), fit (b))

a || b fit (a) + fit (b)
! a Negation is moved inwards and propagated over a

K is defined as a minimal positive number. Function abs(a) is the
absolute value of a.

Equilateral

Isosceles

Isosceles

Isosceles
Scalene

No triangle

No triangle

0

1 2

3 4

(A<=0) or
(B<=0) or
(C<=0)

(A>0) and (B>0) and (C>0)

(2*A<A+B+C) and (2*B<A+B+C)
and (2*C<A+B+C)

(2*A>=A+B+C) or
(2*B>=A+B+C) or
(2*C>=A+B+C)

A<=0
B<=0
C<=0

A>0
B>0
C>0

2*A>=A+B+C
2*B>=A+B+C
2*C>=A+B+C

2*A<A+B+C
2*B<A+B+C
2*C<A+B+C

A==B A!=B

5 8
B==C B!=C A==C A!=C

B==C B!=C

6 7 9 10

11 12

13

Figure 2. Control flow graph of the “triangle classifier” program. This
program distinguishes the type of triangle according to the three input edges
(e.g., Node 6 indicates an equilateral triangle).

In this paper, we employ random walk to achieve the
randomness in test case generation. Our algorithm, WalkTest,
searches the solutions similar as walking in the search space
randomly. The walk steps are controlled by a probability
parameter. The framework of WalkTest iteratively calls a
random walk operator to search solutions and sorts test goals
for the next search iteration.

A. Framework of WalkTest
For an input program, the test goals are converted into a set

of objective functions under a coverage criterion. After this
conversion, WalkTest generates test cases for the input
variables with these objective functions. We describe the
framework of WalkTest in Algorithm 1. WalkTest consists of a
series of iterations as a multi-restart strategy. At the beginning
of every iteration, a simple random test is employed to produce

some initial solutions. Based on these solutions, all unsolved
test goals are sorted to specify the solving priority. More details
of this sorting strategy will be discussed in Part C of Section III.
After the sorting, the first test goal is selected for a random
walk operator (see Part B of Section III). This operator detects
the local optimal solution over a series of trials on the binary
form of variables. Finally, a final coverage rate is calculated
and the test case set for this coverage is collected.

A solution pool is incorporated into WalkTest to record
good quality solutions in search history. This pool stores the
solutions with minimum costs for every test goal. Due to the
capacity limitation of solution pool, the anterior solutions with
bad quality can be flushed out by the posterior good solutions.
In addition to recording good solutions, this solution pool is
employed to update solutions in it. Some literatures [9][17]
have reported that handling one test goal can guide the process
for other goals. Thus, a test goal may be improved or solved as
a “side effect”, when the search algorithm tries to handle
another goal. By this strategy, all the solutions in the pool are
updated while the related test goals are not achieved in the
search algorithm. Before such search algorithm, the random
test mentioned above is assigned to fill some solutions into the
pool. In general, random test can cover some of test goals
without search algorithms.

B. Random Walk Operator
We employ a random walk search algorithm as a local

search operator in WalkTest. This random walk operator treats
the process of searching for test cases as a random walk in
search space. The search process starts by choosing a solution
in the solution pool. Then this operator selects a binary bit of
this solution, and updates it from TRUE to FALSE or vice
versa. This action is repeated until no better solutions can be
explored. To escape from the monotonous solutions assembled
near the original solutions, a probability is specified to update
the solutions from some ones with bad quality.

Given a program in structural testing, the solution is formed
by a vector of values for input variables. In our algorithm, this
vector is encoded to a binary string, which is a connection of
binary form of all separate variables. Thus, only one binary
string needs to be constructed for a program. To provide a
continuous search space, we encode the solutions with Gray
codes. Gray code has been applied in some optimization

585

algorithms to overcome the hardness of continuous search
[3][18]. Gray code is formed as a code with 1-Hamming
distance (Hamming distance is defined as the number of
different bits between two solutions) in Hamming space. In
random walk, a flip is defined as one bit from 1 to 0 or vice
versa in changing one binary string. Table III shows the
difference between natural binary code and Gray code.

A test goal with the least weight is easier to solve than any
other unsolved test goal. This can be explained as follows. For
two test goals A and B, if handling A can lead B to be solved, it
is certain that A has a less weight than B. B cannot be covered
unless A is covered within one test case. Furthermore, if A and
B can not provide a guidance for each other, the weight of them
represents the distance between the current solution and the
optimal solution. Based on this property, the weight of test
goals will give a hint for the hardness of resolving. In addition,
the goals with the same weight within one sorting will be
sorted by the number of solutions in the pool. Evidently, the
goals with more solutions are more likely to converge to the
optimal solution in the search process. It is unnecessary to
provide the dependence of test nodes in a graph form.

Algorithm 2 presents the details of random walk operator in
WalkTest. The random walk operator iteratively flips Gray
codes of variable vector to generate test cases for specific test
goals. This operator randomly selects a solution from the
solution pool and flips it repeatedly. When the pool is empty, a
random solution is generated as the initial solution instead of
the above selection. After flipping every bit of the selected
solution, a set of candidate solutions is formed. The random
walk operator selects a subset of solutions with the minimum
cost. Then the operator flips the solutions under the following
rules: if the cost is better than the original one, the operator
updates the solution and cost; otherwise, it updates the solution
from the universal set or the subset according to a specific
probability. During all the steps, the solution pool is always
updated to record good solutions.

This random walk operator contains five random actions (in
Line 3, 4, 14, 15, and 16 of Algorithm 2, respectively), which
are designed to provide the diversity of solutions. The last two
of these actions are controlled under a specific probability. The
approach of evaluating the value of this probability is discussed
in [12][13]. Although a dynamic strategy for the probability
leads to a rapid convergence of algorithm, it introduces some
additional parameters and complex implementation. Thus, we
simply set it to a static value in our algorithm.

C. Test Goals Sorting
Before the application of random walk operator, the

unsolved test goals are sorted in the search framework. Some
literatures discussed the strategies about this sorting [9][10][17].
In these literatures, the sorting approaches focus on the CFG.
For instance, Díaz, et al. [10] provide a strategy that a node is
picked as a test goal after its parent node is covered in CFG;
Sagarna & Lozano [9] distinguish the priority of test goals with
the same cost by the breadth-first traversal in CFG.

Since the traversal of a graph (such as CFG) is expensive
both in implementation and running time, we attempt to sort
goals only related to the costs of objective functions. The
weight of a goal is defined as the minimum cost among
solutions of this test goal in solution pool. Meanwhile, the test
goals without any solution in the pool are set to a maximum
cost. WalkTest sort the test goals with the weights.

TABLE III. AN 8-BIT FORM OF NATURAL BINARY CODE AND GRAY
CODE

Decimal value Natural binary code Gray code
7 00000111 00001000
8 00000100 00001100

Decimal value 7 is only 1 bit away from 8 in Gray code, but 4 bits in
natural binary code. Thus, at least 4 flips are needed to switch between
decimal 7 and 8 in natural binary code, which may be only 1 flip in Gray code.

IV. EXPERIMENTAL RESULTS
In this section, we demonstrate the experimental results

over some classic programs. WalkTest is implemented in C++
and compiled in g++ under an Intel Pentium D 2.8 GHz with 1
GB memory running Fedora 9 (Linux Kernel 2.6). The
experiments also run under this environment.

In comparison with the best heuristic (tabu search [10]) for
C/D coverage, we conduct our experiments on the same widely
used programs, including the “triangle classifier program with
integer”, the “triangle classifier program with real number”, the
“line rectangle classifier” and the “number of days between
two dates” with the same implement as [10]. The “triangle
classifier” problems are to recognize the type of triangle by the
three input edges (its CFG is in Fig. 2); the “line rectangle
classifier” problem is to obtain the relationship of position
between an input line and an input rectangle; and the “number
of days between two dates” problem is to calculate the number
of days between the two input dates. The key characteristics of
every test problem are summarized in Table IV.

Algorithm 2: Random walk operator
Input: test goal Ti, times m , m1
Output: the updated pool P*

2, probability p, solution pool P

1 while times of running < m1 do
2 if a solution of T in P exists i

 randomly in P; 3 then select solution si
4 else generate one solution si randomly;
5 endif
6 Record the cost c of s ; i i

 of s7 Generate Gray code g ; i i
8 while walking less than m2 times do

 to generate a set of solutions S9 Flip every bit of gi i ;
10 Calculate the cost of solutions in Si ;
11 Update P to P* with new solutions with better quality;
12 Select a subset S * of optima in S , with cost csi i i ;
13 if csi < ci
14 then pick one solution g * in S *, randomly; i i
15 else pick a solution gi*, with probability p from S , i
16 or with 1-p from Si*;
17 endif
18 Update g with gi i* and update c with the cost of gi i*;
19 endwhile
20 endwhile

586

TABLE IV. THE CHARACTERISTICS OF TEST PROGRAMS

Program Node B-node Obj. Loop Var. Type

Tri-int 12 6 24 0 3 Int
Tri-real 12 6 24 0 3 Real

Line-rect 53 18 98 0 8 Real
Day-date 123 42 108 3 6 Int

The column “Node” and “B-node” show the number of nodes and branch
nodes of every program. The following three columns give the number of test
goals in C/D coverage, loops, and input variables. And the last column is the
type of input variables with “Int” as integers and “Real” as real numbers.

In the experiments of WalkTest, we set both the parameters

r and t to 100 in Algorithm 1, respectively, and set both m1 and
m2 to 5 in Algorithm 2. The size of solution pool q is 40 and
the probability parameter p is 2/3. WalkTest repeatedly runs for
100 times to achieve the average time and the maximum time
of running. TSGen and random test are used for comparison.
All the results and parameter values of TSGen are collected
from [10]. In random test, we follow [10] to generate
10,000,000 test cases randomly.

Fig. 3 indicates the relationship between running time and
coverage rate of four programs in Table IV. In the experiment,
we compare the running time and coverage rate of the three
algorithms mentioned above. WalkTest and random test keep
steady tendency in this figure. For coverage rate, WalkTest
always stays above 90%, but the random test stays on a low
level. TSGen cannot achieve high coverage rate in short time as
WalkTest, although TSGen keeps ascending in the curve. To
achieve the same coverage rate, WalkTest consumes less time
than the other two reported algorithms, especially random test.

All the experimental results are summarized in Table V.
WalkTest achieves a notably improvement over the other two
approaches on C/D coverage. The coverage rates of all test

programs are easily achieved 100% by WalkTest. Besides the
average running time, the maximum running time of WalkTest
is less than the average time of the other two algorithms. The
running time of WalkTest is far less than that of random test,
i.e., under 30% of running time of random test. WalkTest also
cost less time than TSGen, i.e., from 3% to 98% of running
time of TSGen. In WalkTest, there is a smooth increase from
the average running time to the maximum running time for
most of programs. However, a sharp increase exists in the
experiments for the “line rectangle classifier” problem in
running time. It implies that the running time of WalkTest is
instable for some programs.

For the programs of the same input variables with different
precisions, WalkTest consumes nearly the same running time.
For the programs with different variable types, WalkTest also
exhibits the similar phenomenon. It implies that WalkTest is
not sensitive to the data type or precision of input variables.

V. CONCLUSION
In this paper, we proposed a random walk based algorithm

(WalkTest) to solve the problem of structural test case
generation. After converting the test case generation into an
optimization problem, WalkTest provides a framework with a
sorting strategy of test goals and a random walk operator. The
sorting strategy presents a priority for test goals, which is
implemented by costs of goals instead of traditional
dependence analysis from control flow graph. The random
walk operator works iteratively to achieve local optimal
solutions. In all the programs of our experiments, 100%
coverage rate is easy to achieve in a short time. Although
WalkTest is designed and tested on condition-decision
coverage, it can be applied on some other coverage criteria,
such as branch coverage or path coverage.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2
Running Time (second)

C
ov

er
ag

e
R

at
e

(%
)

WalkTest
Random
TSGen

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2
Running Time (second)

C
ov

er
ag

e
R

at
e

(%
)

WalkTest
Random
TSGen

(a) Tri-int (b) Tri-real

0

20

40

60

80

100

0 10 20 30 40 50 60
Running Time (second)

C
ov

er
ag

e
R

at
e

(%
)

WalkTest
Random
TSGen

0

20

40

60

80

100

0 40 80 120 160 200 240
Running Time (second)

C
ov

er
ag

e
R

at
e

(%
)

WalkTest
Random
TSGen

(c) Line-rect (d) Day-date

Figure 3. Relationship between running time and coverage rate. The x-axis is the running time in seconds and the y-axis is the coverage rate in percentage.

587

TABLE V. EXPERIMENTAL RESULTS FOR PROGRAMS

Program Rand TSGen WalkTest
 %cov Ave. %cov Ave. %cov Ave. Max. %Rand %TSGen
Tri-int, 32 bits 58.33 298 100 21.43 100 0.80 2.00 99.73 96.27
Tri-real, ±100,000.000 58.33 330 100 0.86 100 0.84 1.96 99.75 2.33
Tri-real, ±2,000,000.0000 58.33 340 - - 100 0.96 2.21 99.72 -
Line-rect, ±100,000.000 57.14 1210 100 60.69 100 17.52 53.24 98.55 71.13
Line-rect, ±2,000,000.0000 57.14 1250 - - 100 20.72 68.64 98.34 -
Day-date, 32 bits 7.41 686 100 251.38 100 204.84 221.28 70.14 18.51

The column “Program” indicates the four programs in Table IV and the range after the program’s name shows the digital precision, e.g., “32 bits” means every
input variable is an integer with 32 bits; “±100,000.000” means a real number with the range ±100,000 and three significant digits after the point. The following
three columns show the performance and results of the three algorithms, respectively. The sub-columns: namely “%cov” shows the coverage rate in percentage
and “Ave.” shows the average running time in seconds. Column “WalkTest” has three extra sub-columns as follows: “Max.” shows the maximum running time in
seconds, “%Rand” and “%TSGen” show the reduction of average running time in percentage over random test and TSGen (e.g., the value of %Rand is defined as

). 1 Ave. of WalkTest / Ave. of Rand−

In future work, some modifications can be added to
WalkTest to enhance its performance. For an instance, we will
combine the static probability parameter with a self-adaptive
strategy driven by the values of objective functions. In addition,
we will apply WalkTest to the object-oriented software testing
in our future work.

ACKNOWLEDGMENT
We thank Dr. Eugenia Díaz for sharing the source code of

the three programs. Dr. Eugenia Díaz is with Department of
Computer Science, University of Oviedo in Spain.

REFERENCES
[1] B. Beizer, Software Testing Techniques, 2nd ed. New York, NY: Van

Nostrand Reinhold, 1984.
[2] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage

and adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366-427,
Dec. 1997.

[3] P. McMinn, “Search-based software test data generation: a survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105-
156, Jun. 2004.

[4] W. Miller and D. L. Spooner, “Automatic generation of floating-point
test data,” IEEE Trans. Software Engineering, vol. 2, no. 3, pp. 223-226,
May 1976.

[5] B. Korel, “Automated software test data generation,” IEEE Trans.
Software Engineering, vol. 16, no. 8, pp. 870-879, Aug. 1990.

[6] S. E. Xanthakis, C. C. Skourlas, and A.K. LeGall, “Application of
genetic algorithms to software testing,” in Proc. 5th Int. Conf. Software
Engineering and its Applications, Toulouse, France, 1992, pp. 625-636.

[7] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating software test
data by evolution,” IEEE Trans. Software Engineering, vol. 27, no. 12,
pp. 1085-1110, Dec. 2001.

[8] N. Tracey, J. A. Clark, K. Mander, and J. A. McDermid, “An automated
framework for structural test-data generation,” in Proc. 13th IEEE Conf.
Automated Software Engineering (ASE 98), Honolulu, HI, 1998, pp.
285-288.

[9] R. Sagarna, and J. A. Lozano, “Scatter search in software testing,
comparison and collaboration with estimation of distribution
algorithms,” European Journal of Operational Research, vol. 169, no. 2,
pp. 392-412, Mar. 2006.

[10] E. Díaz, J. Tuya, R. Blanco, and J. J. Dolado, “A tabu search algorithm
for structural software testing,” Computers and Operations Research, vol.
35, no. 10, pp. 3052-3072, Oct. 2008.

[11] A. Windisch, S. Wappler, and J. Wegener, “Applying particle swarm
optimization to software testing,” in Proc. 9th Conf. Genetic and

Evolutionary Computation (GECCO 07), London, England, 2007, pp.
1121-1128.

[12] H. H. Hoos, “An adaptive noise mechanism for WalkSAT,” in Proc.
18th National Conference on Artificial Intelligence (AAAI 02),
Edmonton, Canada, 2002, pp. 655-660.

[13] B. Selman, H. A. Kautz, and B. Cohen, “Noise strategies for improving
local search,” in Proc. 12th National Conference on Artificial
Intelligence (AAAI 02), Seattle, WA, 1994, pp. 337-343.

[14] W. Zhang, A. Rangan, and M. Looks, “Backbone guided local search for
maximum satisfiability,” in Proc. 18th Int. Joint Conf. Artificial
Intelligence (IJCAI 03), Acapulco, Mexico, 2003, pp. 1179-1186.

[15] H. Jiang, J. Xuan, and Y. Hu, “Approximating backbone in the weighted
maximum satisfiability problem,” in Proc. 1st Int. Symp. Parallel
Algorithms, Architectures and Programming, Hefei, China, 2008, pp.
80-93.

[16] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment
for automatic structural testing,” Information and Software Technology,
vol. 43, no. 14, pp. 841-854, Dec. 2001.

[17] R. Sagarna and X. Yao, “Handling constraints for search based software
test data generation,” in Proc. IEEE Int. Conf. Software Testing
Verification and Validation Workshop (ICSTW 08), Lillehammer,
Norway, 2008, pp. 232-240.

[18] D. Whitely, S. Rana, J. Dzubera, and K. E. Mathias, “Evaluating
evolutionary algorithms,” Artificial Intelligence, vol. 85, no. 1-2, pp.
245-276, Aug. 1996.

[19] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, The Art of
Software Testing, 2nd ed. New York, NY: John Wiley & Sons Inc.,
2004, pp. 1-2.

[20] L. Bottaci, “Predicate expression cost functions to guide evolutionary
search for test data,” in Proc. 5th Conf. Genetic and Evolutionary
Computation (GECCO 03), Chicago, IL, 2003, pp. 2455-2464.

[21] R. Sagarna, A. Arcuri, and X. Yao, “Estimation of distribution
algorithms for testing object oriented software,” in Proc. IEEE Congress
Evolutionary Computation (CEC 07), Singapore, 2007, pp. 438-444.

[22] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks.
Washington, DC: Mathematical Association of America, 1984, pp. 3-5.

[23] Z. Bar-Yossef and M. Gurevich, “Random sampling from a search
engine’s index,” in Proc. 15th Int. Conf. World Wide Web (WWW 06),
Edinburgh, Scotland, 2006, pp. 367-376.

[24] K. Toutanova, C. D. Manning, and A. Y. Ng, “Learning random walk
models for inducing word dependency distributions,” in Proc. 21st Int.
Conf. Machine Learning (ICML 04), Banff, Canada, 2004, pp. 13.

[25] Y. Peng, G. Kou, G. Wang, H. Wang, and F. Ko, "Empirical Evaluation
Of Classifiers For Software Risk Management," Int. Jour. Information
Technology and Decision Making (IJITDM), vol. 8, no. 4, pp. 749-768,
2009.

588

	I. Introduction
	II. Search-based Structural Testing
	III. Random Walk Search
	A. Framework of WalkTest
	B. Random Walk Operator
	C. Test Goals Sorting
	IV. Experimental Results
	V. Conclusion
	Acknowledgment
	References

