
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

New Insights Into Diversification
of Hyper-Heuristics

Zhilei Ren, He Jiang, Member, IEEE, Jifeng Xuan, Yan Hu, and Zhongxuan Luo

Abstract—There has been a growing research trend of applying
hyper-heuristics for problem solving, due to their ability of
balancing the intensification and the diversification with low
level heuristics. Traditionally, the diversification mechanism is
mostly realized by perturbing the incumbent solutions to escape
from local optima. In this paper, we report our attempt toward
providing a new diversification mechanism, which is based on
the concept of instance perturbation. In contrast to existing
approaches, the proposed mechanism achieves the diversifica-
tion by perturbing the instance under solving, rather than
the solutions. To tackle the challenge of incorporating instance
perturbation into hyper-heuristics, we also design a new hyper-
heuristic framework HIP-HOP (recursive acronym of HIP-HOP
is an instance perturbation-based hyper-heuristic optimization
procedure), which employs a grammar guided high level strategy
to manipulate the low level heuristics. With the expressive
power of the grammar, the constraints, such as the feasibility of
the output solution could be easily satisfied. Numerical results
and statistical tests over both the Ising spin glass problem
and the p-median problem instances show that HIP-HOP is
able to achieve promising performances. Furthermore, runtime
distribution analysis reveals that, although being relatively slow at
the beginning, HIP-HOP is able to achieve competitive solutions
once given sufficient time.

Index Terms—Hyper-heuristics, instance perturbation, Ising
spin glass, linear genetic programming, p-median.

LIST OF ACRONYMS

LLH Low Level Heuristic
IPLLH Instance Perturbation based LLH
SPLLH Solution Perturbation based LLH
SOPHY SOlution Perturbation based HYper-heuristic
SOPHY-LONG SOPHY with longer cut off time
HIPHOP HIP-HOP is an Instance Perturbation based

Hyper-heuristic Optimization Procedure

Manuscript received March 14, 2013; revised July 31, 2013 and November
1, 2013; accepted November 20, 2013. This work was supported in part by
the Fundamental Research Funds for the Central Universities under Grant
DUT13RC(3)53, in part by the New Century Excellent Talents in University
under Grant NCET-13-0073, and in part by the National Natural Science
Foundation of China under Grant 61370144, Grant 61175062, and Grant
61300017. This paper was recommended by Associate Editor Y. S. Ong.

Z. Ren, H. Jiang, Y. Hu, and Z. Luo are with the School of Software, Dalian
University of Technology, Dalian 116621, China (e-mail: zren@dlut.edu.cn;
jianghe@dlut.edu.cn; huyan@dlut.edu.cn; zxluo@dlut.edu.cn).

J. Xuan is with INRIA Lille–Nord Europe, Lille 59650, France (e-mail:
jifeng.xuan@inria.fr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2013.2294185

I. Introduction

HYPER-HEURISTICS have attracted much research at-
tention in recent years [1]–[4]. A hyper-heuristic is de-

fined as an automated methodology for selecting or generating
heuristics to solve hard computational search problems [5].
In general, a hyper-heuristic consists of a high-level strategy
and a set of low-level heuristics (LLHs). Many well known
algorithms are employed as the high level strategy to adap-
tively manage the LLHs in solving cross-domain problems,
including genetic algorithm [6], ant colony optimization [7],
and genetic programming [1]–[3], [8]. Accordingly, the mostly
used LLHs can be summarized as follows [9].

1) Local search: conducts iterative neighborhood moves to
improve the quality of the input solution, until a local
optimum is reached.

2) Mutation: performs small modifications on the solution,
by changing the variable values of solution components.

3) Ruin-recreate: partially destroys, and then repairs the
solutions. For example, the shake operator in variable
neighborhood search falls into this category [10].

4) Crossover: takes two solutions as parents, and returns a
new solution (offspring) as the output. Typical examples
include uniform crossover and two-point crossover.

As stated in [4] and [11], the above LLHs can be classified
into two categories, i.e., the intensifying LLHs that provide
the intensification mechanisms, and the diversifying LLHs
that implement the diversification mechanisms. In general, the
local search operators belong to intensifying LLHs, in that
they are mostly employed to improve the solution quality.
Accordingly, mutation, ruin-recreate, and crossover fall into
the diversifying LLH category. More specifically, since these
three types of LLHs help the search escape from the attraction
basin by perturbing the solutions [9], in this paper, these LLHs
are also called solution perturbation-based LLHs (SPLLHs).
Similar as traditional evolutionary algorithms that balance the
intensification and the diversification in the search process
[12], a challenging issue in hyper-heuristics is how to find
new effective intensification or diversification mechanisms.

In this paper, we introduce a new diversification mech-
anism for hyper-heuristics by proposing a set of novel
diversifying LLHs, namely, the instance perturbation-based
LLHs (IPLLHs). Our basic idea is motivated by the great
success of the instance perturbation-based heuristic algorithms
in the literature, including search space smoothing [13], [14],
weight annealing [15], [16], and fine tuned learning [17].
These algorithms share a common characteristic, i.e., instead

2168-2267 c© 2013 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

of perturbing the solutions to escape from the local optima,
the instance1 is perturbed to create plausible new searching
directions [19]. However, the idea of perturbing the instance
has not been systematically investigated in the context of
hyper-heuristics. In this paper, we propose a set of IPLLHs by
perturbing the instance, including i-mutation, i-ruin-recreate,
and i-crossover. All the proposed IPLLHs can achieve the
diversification in a different way, as compared with mutation,
ruin-recreate, and crossover.

1) i-mutation: assigns weights to the instance components
to obtain perturbed instances, and local optima over the
instance may not be locally optimal over the perturbed
ones.

2) i-ruin-recreate: derives perturbed instances by partially
destroying the components of the original instance.

3) i-crossover: is an extension of i-mutation and takes the
information of two solutions into account.

Second, we propose a new hyper-heuristic named HIP-HOP
to manipulate these new IPLLHs. Instance perturbation-based
hyper-heuristic optimization procedure (HIP-HOP) (inspired
by the definition of “GNU’s Not Unix” [20]). The difficulty
of incorporating IPLLHs into existing hyper-heuristics lies
in the fact that, most existing instance perturbation-based
heuristic algorithms employ certain prescheduled schemes that
control the degree/strength of the perturbation, so that the
final output is a feasible solution to the instance [13], [17].
However, existing hyper-heuristics usually employ mutation or
crossover operators in their high level strategies to modify the
LLH sequences [4], [8]. Hence, certain maintenance strategies
are required to handle the perturbation schedule so that IPLLHs
could be incorporated into hyper-heuristics. Following the
hierarchy of many other hyper-heuristics [2], [21], HIP-HOP
is designed to be a two-layered framework. In the high level, a
grammar guided high level strategy is developed to manipulate
the LLHs, including intensifying LLHs and IPLLHs. This
grammar guided high level strategy has the following features.
1) With the expressive power of the grammar, the constraints,
such as the feasibility of the output solution could be easily
satisfied. 2) A good tradeoff between the diversification and the
intensification could be achieved. 3) IPLLHs and SPLLHs could
be managed in a similar way. With minor modifications to
the grammar, HIP-HOP could be transformed into a sOlution
perturbation-based hyper-heuristic (SOPHY), a comparative
hyper-heuristic in which only SPLLHs are employed to provide
the diversification mechanism. This feature also enables the
fair comparisons between IPLLHs and SPLLHs.

To evaluate the generality of HIP-HOP, we consider the
applications to the Ising spin glass problem and the p-median
problem. Extensive experiments over the two minimization
problems are conducted to examine HIP-HOP from both
the effectiveness and the efficiency perspectives. On the one
hand, from the effectiveness perspective, numerical experi-
ments are carried out over 60 benchmark instances for each
problem domain. The results show that, HIP-HOP is able
to achieve promising performances, which are comparable

1Given the problem formulations, an instance could be obtained by
specifying all the problem parameters [18].

to the state-of-the-art results. In particular, for the p-median
problem, HIP-HOP achieves better results than the best known
results over three instances. Meanwhile, HIP-HOP statistically
outperforms SOPHY, which to some extent demonstrates the
effectiveness of the IPLLHs. On the other hand, from the effi-
ciency perspective, runtime distribution analysis is employed
to investigate the dynamic properties of HIP-HOP. Exper-
iments over representative instances indicate that, although
being relatively slow at the beginning, once given sufficient
time, HIP-HOP is able to achieve very competitive results.

The rest of this paper is organized as follows. In Section II,
we briefly introduce the related work of both hyper-heuristics
and instance perturbation-based algorithms. In Section III, we
propose the IPLLHs with applications to the two problem
domains. In Section IV, the HIP-HOP framework is presented.
After that, we develop a grammar guided high level strategy
in Section V. Experimental results are given in Section VI.
Finally, Section VII concludes the paper and presents several
potential research directions.

II. Related Work

A. Hyper-Heuristics

The motivation of hyper-heuristics is to raise the level of
generality at which search methodologies can handle [22]. This
objective is achieved by introducing a domain barrier, such
that the domain-specific LLHs could be separated from the
domain independent high level strategy. As stated in [5], hyper-
heuristics could be classified from multiple dimensions.

From the perspective of the high level strategy, hyper-
heuristics could be classified into the following four cat-
egories [5]: 1) simple random and choice function [23];
2) greedy and peckish [24]; 3) metaheuristics-based ap-
proaches [2]; and 4) learning-based algorithms [25]. Further-
more, the hypothesis that evolutionary algorithms are able to
evolve high-quality heuristics has been empirically validated
by the fitness landscape analysis [26], [27]. In HIP-HOP, we
adopt a genetic programming-based design, due to the con-
straint handling ability [28] and the promising expressiveness
[29] of genetic programming.

From the perspective of LLHs, hyper-heuristics could be
classified into two categories, i.e., those which use constructive
LLHs and those based on perturbative LLHs. For the con-
structive LLH-based hyper-heuristics, the input is an empty
solution, and each LLH represents a variable assignment
strategy. After all the LLHs have been applied incrementally,
the output is a feasible solution to the problem instance. For
example, the algorithms proposed in [30] and [31] fall into this
category. On the contrary, in a perturbative LLH-based hyper-
heuristic [4], [8], the LLHs are used to iteratively improve
the input solution, which is a feasible solution already. The
framework we propose in this paper falls into this category.
Since the perturbative LLH-based hyper-heuristics are closely
related to the adaptive memetic algorithms [32], many ideas
for problem solving could be borrowed.

In this paper, we are interested in evolving heuristics with
an evolutionary high level strategy. The major difference
between the proposed framework and the existing perturbative



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: NEW INSIGHTS INTO DIVERSIFICATION OF HYPER-HEURISTICS 3

Fig. 1. Two approaches to escaping from local optima. (a) Solution pertur-
bation. (b) Instance perturbation.

LLH-based hyper-heuristics lies in the realization of the di-
versification mechanisms. Instead of perturbing the incumbent
solutions to escape from local optima, we intend to investigate
the possibility of integrating hyper-heuristics and instance
perturbation based methodologies, which could implement the
diversification functionalities in a novel paradigm.

B. Instance Perturbation-Based Problem Solving

In this subsection, we briefly introduce the instance
perturbation-based problem solving techniques. Fig. 1 illus-
trates the difference between the solution perturbation and the
instance perturbation-based techniques [33]. More specifically,
Fig. 1(a) describes a typical diversification-intensification cy-
cle over an imaginary search space (suppose that the problem
is a minimization problem). First, the local search guides the
solution to reach a local optimum. Then, diversifying operators
(e.g., mutation, crossover) attempt to perturb the solution to
a different region of the search space. After that, local search
could be applied again, in the hope that the search could escape
from the former attraction basin. In contrast, the instance
perturbation-based approaches try to solve the problem in
a different scheme. Fig. 1(b) depicts the main idea of the
diversification-intensification cycle in instance perturbation-
based approaches [15], [33]. When the search gets stuck at
a local optimum, instead of perturbing the solution directly,
the search space is perturbed, so that the local optimum
on the original search space is not locally optimal on the
perturbed one. Consequently, local search could be executed to
continue the search procedure. After the local search finishes,
the solution is transferred back to the original search space,
where it might be further improved. Within the perturbation,
it is possible that the instance-related information could be
extracted and leveraged.

For example, Gu and Huang [13] proposed the search space
smoothing algorithm for the traveling salesman problem. In
the algorithm, the search landscape changes gradually from
a smooth one to the original, rugged one. By this strategy,
search space smoothing aims to prevent the search procedure
from premature convergence. Similar ideas could be found in
fine-tuned learning [17], noising methods [34], and several
backbone guided algorithms [35]–[38]. Recently, the weight
annealing-based algorithms have been applied to many prob-
lem domains, such as the traveling salesman problem and
the Ising spin glass problem [15], and 1-D bin packing [16].
In weight annealing approaches, the instance perturbation is
realized by assigning weights to each local part of the instance.
Furthermore, Ninio and Schneider [15] developed several

knowledge exploitation strategies, such as random reweighting
and adversarial reweighting.

We could summarize several commonalities in these in-
stance perturbation-based approaches. 1) These approaches
have the potential to exploit the instance information. 2) Most
of these approaches could be formulated under a generic
framework, with a relatively unified interface. 3) The instance
perturbation-based methodologies are flexible, as demon-
strated by the promising results from various problem do-
mains.

However, despite of the promising performances, the idea
of perturbing the instance has not been systematically inves-
tigated in the context of hyper-heuristics, to the best of our
knowledge. The difficulty, as mentioned in Section I, is that the
constraints, such as the solution feasibility, have to be carefully
handled by certain prescheduled scheme. In this paper, we
intend to incorporate IPLLHs and genetic programming-based
high level strategy into an integrated framework. On the one
hand, the IPLLHs are able to provide novel diversification
mechanisms. On the other hand, with the expressive power
of genetic programming, the feasibility constraint could be
implicitly satisfied.

III. Instance Perturbation-Based Low Level

Heuristics

In this section, we develop a set of IPLLHs. In Section III-A,
we first introduce the general forms of the IPLLHs. Then, in
Sections III-B and III-C, respectively, we use the Ising spin
glass problem and the p-median problem as two casestudies,
to demonstrate the generality of these IPLLHs.

A. General Forms of IPLLHs

1) i-Mutation: The i-mutation is inspired by the reweight-
ing strategies in [15]. Given an instance space � (the set
consists of all the possible instances of a given problem), and
the solution space S, the objective function is denoted as a
mapping f : S × � → R. First, the objective function f

is written as the sum of several subfunction, each of which
corresponds with a local part of the instance

f (s, π) =
N∑

i=1

fi(s, π) (1)

where π ∈ � is an instance, and s ∈ S is a feasible solution
to π. Then, by introducing a weight vector w, a weighted
objective function fw is defined as

fw(s, π) =
N∑

i=1

wi × fi(s, π). (2)

By assigning the values of the weight vector w ∈ RN ,
the search landscape of the solution could be fine-tuned. For
example, if all the weights equal to 0, the search landscape
would be flat, while if all the values equal to 1, the weighted
objective function fw would degenerate to the original ob-
jective function. With proper weight assignment strategy, a
former local optimum might not be locally optimal under the
same neighborhood structure, when considering the weighted



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

objective function. Thus, local search could be applied, to
continue the search process.

Optionally, an instance mapping function T : �×RN → �

could be constructed, so that f (s, T (π, w)) = fw(s, π) holds
for all s, w and π. With this step, we are able to construct a
perturbed instance.2

After the perturbed instance has been constructed, local
search is applied over the instance T (π, w). When the local
search terminates, the obtained solution is evaluated again over
the original instance π. Hopefully, local search could be further
applied to the solution, over π.

2) i-Ruin-Recreate: The motivation of this operator is
intuitive, which has also been proposed in this paper. For
example, in [33], an instance perturbation-based algorithm for
the traveling salesman problem is proposed. In the algorithm,
when a solution is stuck in a local optimum, several instance
variables (represented by coordinates of cities) are randomly
selected and removed from the instance, then local search
is applied over the reduced instance. When the local search
finishes, the solution is repaired to be a feasible solution to
the original instance, which hopefully is a nonlocal optimum.

3) i-Crossover: In this paper, the instance perturbation-
based crossover could be considered as a special case of
i-mutation, i.e., i-crossover is based on the weight assignment
strategy as well. The main difference is that, instead of consid-
ering only one solution, in i-crossover, the information from
both the two parent solutions is considered. For instance, the
restricted weight modification could be conducted over part of
the solutions (e.g., the intersection of the two parent solutions).

B. IPLLHs for Ising Spin Glass Problem

Finding the ground states of the Ising spin glass is a
classic problem, which has been well investigated in statistical
physics. The Ising spin glass problem aims to find a state of
spins called the ground state for given coupling constants Jij

that minimizes the energy. Searching for the ground states
of the Ising spin glass is equivalent to locating the global
optimum for the minimum-weight cut problem [40]. Since
minimum-weight cut is NP-hard [41], the task of finding a
ground state of an unconstrained Ising spin glass instance is
NP-hard. In this paper, we consider a special case, in which
the spins are located on a 2-D grid, and each spin interacts
with its nearest neighbors.

Each Ising spin glass instance is represented by an interac-
tion matrix (Jij)N×N , where Jij indicates the coupling between
spin i and spin j. A feasible solution is represented by a
vector σ of length N, in which σi takes the value from {1, −1}.
The goal is to minimize the objective function

h(σ) = − 1

2N

N∑

i=1

N∑

j=1

Jij × σi × σj. (3)

1) i-Mutation for Ising Spin Glass Problem: Following the
sketch in Section III-A, the i-mutation for the Ising spin glass

2Otherwise, if the instance mapping function is not available, modifications
have to be made to local search operators by changing the objective function
from f to fw, which is similar to the strategies in guided local search [39].

Algorithm 1: i-mutation for Ising Spin Glass
Input: interaction matrix J , number of spins N,

i-mutation-portion η, i-mutation-strength μ

Output: perturbed interaction matrix J ′

begin
for each spin i do wi ← 1;
Randomly select N × η spins as the candidate;
for each spin i in the candidate do

wi ← 1 − μ;

for i ← 1 to N do
for j ← 1 to N do

J ′
ij ← 1

2 (wi + wj) × Jij;

return J ′;
end

Algorithm 2: i-ruin-recreate for Ising Spin Glass
Input: interaction matrix J , number of spins N,

i-remove-portion θ

Output: perturbed interaction matrix J ′

begin
J ′ ← J ;
Randomly select N × θ spins as the candidate;
Delete the columns and the rows of J ′, with respect
to the candidate set;
return J ′;

end

Algorithm 3: i-crossover for Ising Spin Glass
Input: interaction matrix J , number of spins N, feasible

solution s1, feasible solution s2,
i-crossover-strength τ

Output: perturbed interaction matrix J ′

begin
for each spin i do

if s1i = s2i then wi ← 1;
else wi ← 1 − τ;

for i ← 1 to N do
for j ← 1 to N do

J ′
ij ← 1

2 (wi + wj) × Jij;

return J ′;
end

problem is described as follows. First, the objective function
is rewritten as

h(σ) =
N∑

i=1

(− 1

2N

N∑

j=1

Jij + Jji

2
× σi × σj). (4)

By introducing the vector w, the weighted objective function
is given by

hw(σ) =
N∑

i=1

wi × (− 1

2N

N∑

j=1

Jij + Jji

2
× σi × σj). (5)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: NEW INSIGHTS INTO DIVERSIFICATION OF HYPER-HEURISTICS 5

Then, the perturbed instance can be derived by

J ′
ij =

wi + wj

2
Jij. (6)

Given a solution s, it is easy to verify that its objective value
over the perturbed instance J ′ equals its weighted objective
value over the original instance J [15]. Thus, with the weight
vector w, the perturbed instance could be derived easily. The
pseudo code for the LLH is presented in Algorithm 1.

2) i-Ruin-Recreate for Ising Spin Glass Problem: The
motivation is very simple. The search landscape of the original
instance is perturbed by partially destroying the local parts
of the instance, over which the former local optimum may
not be locally optimal anymore. Thus, local search could be
applied to proceed the search. The pseudo code is presented
in Algorithm 2.

3) i-Crossover for Ising Spin Glass Problem: This operator
is very similar with i-mutation, except for the candidate set of
the weight vector for perturbation. Instead of randomly select-
ing the elements with predetermined number, in i-crossover,
the candidate set is adaptively selected. The perturbation
is only conducted over the variables (local parts) that are
different between the two parent solutions. By this strategy,
the output instance of the LLH take the information of both the
parents into account. The pseudo code is given in Algorithm 3.

C. IPLLHs for p-Median Problem

As a basic problem in location theory, the p-median prob-
lem has attracted much research attention in combinatorial op-
timization. In this paper, we focus on the symmetric p-median
problem, which has been proved to be NP-hard [42].

Given a set F of m facilities, and an m × m matrix D with
the traversing distance dij between facility i and facility j,
for all i, j ∈ F . The objective of the p-median problem is to
minimize the sum of these distances

g(x) =
m∑

i=1

m∑

j=1

dij × xij (7)

subject to m∑

j=1

xij = 1, i ∈ {1, 2, . . . , m} (8)

m∑

j=1

yj = p (9)

xij ≤ yj, i, j ∈ {1, 2, . . . , m} (10)

xij, yj ∈ {0, 1}, i, j ∈ {1, 2, . . . , m}. (11)

In the formulations, a solution is represented by a matrix
Xm×m, as well as a vector Ym indicating the chosen facilities,
where xij = 1 means that the facility i is assigned to the facility
j, and xij = 0 otherwise; yj = 1 indicates that the facility j is
selected as a median, and yj = 0 otherwise. Constraints (8) and
(10) mean that each facility is allocated to only one median.
Constraint (9) ensures that p facilities are selected as the
medians, and Constraint (11) presents the integer conditions.

The IPLLHs for the p-median problem are as follows.

Algorithm 4: i-mutation for p-Median
Input: distance matrix D, number of facilities m,

solution s, i-mutation-portion η,
i-mutation-strength μ

Output: perturbed distance matrix D′

begin
for each facility i do wi ← 1;
Randomly select m × η facilities as the candidate;
for each facility i in the candidate do

wi ← 1 − μ;

for i ← 1 to m do
for j ← 1 to m do

D′
ij ← 1

2 (wi + wj) × Dij;

return D′;
end

Algorithm 5: i-ruin-recreate for p-Median
Input: distance matrix D, number of facilities m,

i-remove-portion θ

Output: perturbed distance matrix D′

begin
D′ ← D;
Randomly select m × θ facilities as the candidate;
Delete the columns and the rows of D′, with respect
to the candidate set;
return D′;

end

1) i-Mutation for p-Median Problem: Following the sketch
in Section III-A, the i-mutation for the p-median problem is
described as follows.

First, the objective function is rewritten as

g(x) =
m∑

i=1

m∑

j=1

dij + dji

2
× xij (12)

subject to Constraints (8)–(11).
By introducing the vector w, the weighted objective function

is given by

gw(x) =
m∑

i=1

wi ×
m∑

j=1

dij + dji

2
× xij. (13)

Then, the perturbed instance can be derived by

D′
ij =

wi + wj

2
Dij. (14)

Similar to the i-mutation for the Ising spin glass problem,
the verification is straightforward for the p-median problem.
The pseudo code for the LLH is presented in Algorithm 4.

2) i-Ruin-Recreate for p-Median Problem: The main
motivation behind i-ruin-recreate for the p-median problem
is similar with that for the Ising spin glass problem, i.e.,
perturbing the search landscape of the original instance by
partially destroying the local parts of the instance. The pseudo
code is presented in Algorithm 5.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 6: i-crossover for p-Median
Input: distance matrix D, number of facilities m,

feasible solution s1, feasible solution s2,
i-crossover-strength τ

Output: perturbed distance matrix D′

begin
for each facility i do

if facility i is a median in both s1 and s2 then
wi ← 1 − τ;
else wi ← 1;

for i ← 1 to m do
for j ← 1 to m do

D′
ij ← 1

2 (wi + wj) × Dij;

return D′;
end

3) i-Crossover for p-Median Problem: The main idea
behind the i-crossover for the p-median problem is that, if
a facility i is selected as a median for both the two parents,
it is highly possible that this facility might contribute to
high quality solutions. Thus, by decreasing the corresponding
weight, this facility may be selected as a median during the
local search over the offspring solution with higher probability.
Otherwise, the corresponding weight remains unchanged. The
pseudo code is presented in Algorithm 6.

IV. HIP-HOP Framework

In this section, we present the HIP-HOP framework. Fol-
lowing the hierarchy of most other hyper-heuristics [2], [21],
HIP-HOP is designed as a two-layered framework, which
consists of the domain-independent high level strategy and
the domain-specific modules. The framework diagram is
illustrated in Fig. 2. In the figure, the modules are represented
by rounded rectangles, and the arrows indicate the interactions
between the modules. In particular, the functionalities of the
main components are described as follows.

1) The population consists of a set of LLH sequences. Each
sequence is associated with a solution, over which the
LLHs are applied. Meanwhile, the fitness of the LLH
sequence is evaluated using the objective value of the
corresponding solution.

2) The initialization module is used to construct the initial
LLH sequences.

3) The high-level-mutation module is used to modify the
LLH sequences, to make the search more exploratory.

4) The selection module is used to select the LLH se-
quences for the next generation. In this paper, the binary
tournament selection is adopted.

5) The IPLLHs are used to construct the perturbed in-
stances.

6) The intensifying LLHs are mainly local search operators.
With each module presented, we proceed to describe the

interactions between these components in Fig. 2, to explain
how HIP-HOP works. Meanwhile, following the diagram, the
pseudo code of HIP-HOP is presented in Algorithm 7.

Fig. 2. HIP-HOP framework diagram.

During the initialization phase, a set of LLH sequences
are generated by the Initialization module (step 1). After
that, the LLHs in each sequence are executed for problem
solving. Similar with existing work [4], we adopt the design
in which the diversifying LLHs and intensifying LLHs are ap-
plied consecutively. However, in this paper, the diversification
mechanism is realized by applying intensifying LLHs over
perturbed instances. More specifically, in each diversification-
intensification cycle (steps 2–4), a perturbed instance is firstly
constructed in step 2, by applying an IPLLH over the original
instance. Then, in step 3, an intensifying LLH is applied over
the perturbed instance. In step 4, the instance is switched
back to the original one, and an intensifying LLH is executed
again to improve the solution quality. When all the LLHs of a
sequence are conducted, the objective value of the associated
solution is used to evaluate the quality of the LLH sequences.
After all the LLH sequences are evaluated, the LLH sequences
of the next generation are selected (step 5). Besides, to make
the search over the heuristic space more exploratory, we
also apply High-level-mutation to modify the LLH sequences
(step 6). The iteration continues (steps 2–6), until certain stop-
ping criterion is met. Examples of stopping criteria include the
maximum number of local search executions, the maximum
cut off time, etc. (see Sections VI-C and VI-D).

Note that the pseudo code described in Algorithm 7
illustrates a generic framework. To instantiate the algorithm
for problem solving, several modules have to be imple-
mented, such as initialization, high-level-mutation, and various
domain-specific LLHs. More importantly, several constraints
(e.g., the feasibility of the output solution and the consecutive
execution of diversifying LLHs and intensifying LLHs) have
to be satisfied within the modules. In the following sections,
we shall discuss how to develop these modules, so that the
HIP-HOP framework could be applied to different problem
domains.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: NEW INSIGHTS INTO DIVERSIFICATION OF HYPER-HEURISTICS 7

Algorithm 7: HIP-HOP
Input: problem instance π, number of individuals

pop-size, maximum derivation depth dep

Output: optimized solution s

begin
// Initialization, step (1) in

Fig. 2
Randomly initialize a population of LLH sequences;
for each LLH sequence of the population do

Randomly initialize an associated solution;

// Main loop
while stopping criterion not met do

for each LLH sequence seq of the offspring
population do

Assign the associated solution from the
parent population;
for each LLH of seq do

switch type of the current LLH do
case IPLLH

// step (2) in Fig. 2
Apply IPLLH to generate a
perturbed instance;

case intensifying LLH
if the current instance is a
perturbed instance then

// step (3) in Fig. 2
Apply intensifying LLH over
the perturbed instance;

else
// step (4) in Fig. 2
Apply the intensifying LLH
over the original instance;

Evaluate seq;

// step (5) in Fig. 2
Select the survival LLH sequences;
// step (6) in Fig. 2
Modify the offspring population LLH sequences
using High-level-mutation;

return the best solution s achieved by the algorithm;
end

V. Grammar Guided High Level Strategy

In this section, we discuss the development issues of the
high level strategy. In this paper, the high level strategy
is inspired by the linear genetic programming-based hyper-
heuristic framework [29], in which a grammar guided high
level strategy is incorporated.

The reasons we choose the grammar guided high level
strategy are twofold. First, most existing instance perturbation
based algorithms employ certain prescheduled schemes that
control the degree/strength of the perturbation [13], [17], [19],
[15]. For example, in search space smoothing [13], there is an
order parameter that controls the ruggedness of the perturbed
landscape. During the early stage, the search is conducted over

Fig. 3. Production rules for the HIP-HOP framework.

a smooth landscape. As the search proceeds, the order param-
eter gradually decreases, and the landscape becomes more and
more rugged, toward the original landscape. Contrarily, hyper-
heuristics usually employ mutation or crossover to modify
the LLH sequences [4], [8]. Without certain maintenance
strategies, it is difficult to guarantee that the final solution
obtained is a feasible solution to the original instance. With a
grammar to guide the initialization and modification routines,
however, the constraints could be implicitly satisfied [28].
Second, with the grammar, it would be possible that IPLLHs
and the existing SPLLHs could be incorporated into a unified
framework. Hence, this design enables the fair comparisons
between the two variants.

Following the notation of linear genetic programming [29],
we define the grammar as a tuple G = (N , T ,P,S). In the
definition, N represents the set of nonterminals, T represents
the terminal set, P represents the production rules, and S
represents the start symbol. A minor difference from the
grammar in [29] is that, in this paper, all the terminals indicate
LLHs (e.g., local search operators). While in [29], the termi-
nals are primitives extracted from LLHs (e.g., 2-CHANGE
neighborhood move from the 2-opt local search operator for
the traveling salesman problem). By raising the granularity of
the abstraction, we intend to incorporate instance perturbation
based techniques into hyper-heuristics, meanwhile keep the
framework general for cross domain problem solving.

In the grammar G, the nonterminal set is defined as
N = {〈loop〉, 〈divers〉, 〈intens〉, 〈IPLLH〉}. The terminal set
T consists of various LLHs. The production rules employed
in this paper are described in the Backus-Naur Form, as
shown in Fig. 3, and the start symbol is represented by
〈loop〉. In particular, the production rules are explained as
follows.

1) Production (1) indicates that, the LLH sequences con-
structed by the grammar reflect the main characteristic
of the metaheuristic, which is defined as iterative gen-
eration process, which guides a subordinate heuristic by
combining intelligently different concepts for exploring
and exploiting the search space [43]. More specifically,
the tail recursion in the rule implies that the sequence is
executed in an iterative paradigm. Meanwhile, within
each iteration, LLHs that realize the diversification
mechanism and the intensification mechanism are ap-
plied consecutively.

2) Production (2) implies that, the intensification mecha-
nism is mostly carried out by local search operators in
this paper.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 8: High-level-mutation
Input: Grammar G, LLH sequence seq, high level

mutation rate α

Output: modified LLH sequence seq′

begin
seq′ ← seq;
for each LLHi of seq′ do

if LLHi is a local search operator then
Reselect LLHi with respect to Production (2)
of G, with probability α;

if LLHi is an IPLLH then
Reselect LLHi with respect to Production (4)
of G, with probability α;

end
return seq′;

3) Production (3) means that, the diversification mechanism
in HIP-HOP is realized following the scheme of most
instance perturbation based techniques. First, the original
instance is perturbed with an IPLLH. After that, the
solution is transferred into the solution space derived
by the perturbed instance, and intensifying LLHs are
carried out over the perturbed instance. Since the goal
of the framework is to obtain an optimal or near-optimal
solution to the original instance, the solution should then
be repaired so that it is feasible in the original search
space. To this point, the solution might have escaped
from the local optimum, so that local search could be
applied to improve its quality.

4) Production (4) lists the domain specific IPLLHs, which
we have discussed in detail in Section III.

Given the grammar G, LLH sequences represented by
sentences of G could be easily derived. More specifically,
the derivation begins from the start symbol 〈loop〉. At each
iteration, the left most nonterminal is replaced with the right
side of the corresponding production rules. If there are more
than one rule with respect to the nonterminal, random selection
is applied. By setting a constraint on the maximum depth
of Production (1), the derivation could be prevented from
being conducted infinitely. Meanwhile, we should note that,
the maximum derivation depth dep does not imply that each
solution is only optimized for only dep iterations. Instead, it
means that each LLH sequence is evaluated and selected every
dep diversification-intensification cycles. At the subsequent
iteration, the search is continued by applying the survival
LLH sequences over their corresponding solutions. Fig. 4
depicts an example of the LLH sequence construction, with
maximum depth of 2. When a sentence is derived, it can
be observed that the LLHs could be executed sequentially.
We also develop a simple high-level-mutation module over
the LLH sequences, so that the search over the heuris-
tic space could be more exploratory. The pseudo code of
high-level-mutation is presented in Algorithm 8. For each
LLH of a sequence, if there exists an alternative LLH of
the same functionality [such as IPLLHs of Production (4)

Fig. 4. Illustration of derivation procedure.

Fig. 5. Production rules for SPLLHs.

and intensifying LLHs of Production (2)], the corresponding
LLH is randomly reselected with a probability α. Since the
mutation is conducted under the guidance of the grammar
G, it is obvious that solution feasibility could be easily
maintained.

By embedding the grammar guided initialization and high-
level-mutation into Algorithm 7, the functionalities of the
high level strategy part could be realized. In the proposed
framework, the grammar plays the most important role, from
two aspects. First, during the initialization phase, the LLH se-
quences are derived with respect to the grammar. Second,
the grammar is used to guide the high-level-mutation routine.
The features of the grammar guided high level strategy could
be summarized as follows. First, by using a grammar, the
solution feasibility could be implicitly satisfied. Second, the
grammar also reflects the characteristics of metaheuristics,
i.e., the balance between the intensification and the diversi-
fication [12], [43]. Third, interestingly, a byproduct of the
grammar guided framework is that, by modifying the grammar
[e.g., by replacing the Productions (3) and (4) in Fig. 3
with Productions (5) and (6) in Fig. 5], the diversification
mechanisms could be provided by the traditional SPLLHs, such
as mutation and crossover. In this sense, HIP-HOP could easily
be transformed to SOPHY. Consequently, IPLLHs and SPLLHs
could be described under a unified framework. Also, it would
be convenient to conduct fair comparisons and analysis about
the two variants.

VI. Empirical Study

A. Preliminaries

All the experiments in this paper are performed on a Pen-
tium IV 3.2 GHz PC with 4GB memory, running GNU/Linux
with kernel 3.2.0. All the codes are implemented in C++,
compiled using g++ 4.6. The running time is measured in
seconds. To examine the generality of the algorithms, we con-
sider the Ising spin glass problem and the p-median problem
as two case studies. For each problem domain, 60 benchmark
instances3 are employed to evaluate various properties of the

3http://oscar-lab.org/people/∼zren/hip-hop/



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: NEW INSIGHTS INTO DIVERSIFICATION OF HYPER-HEURISTICS 9

proposed framework. For the Ising spin glass problem, we
focus on the 2-D instances with Gaussian interactions. In
particular, we employ rudy,4 which is a publicly available
instance generator for the Ising spin glass problem, with
the parameter—spinglass2g. We generate 60 Ising spin glass
instances with the number of variables ranging from 225 to
400 (e.g., 15×15-* indicates the instances with 225 spins,
which are placed on a 15×15 grid).

On the other hand, for the p-median problem, we focus
on the symmetric instances. The instances include 40 graph-
based instances from ORLIB [44], and 20 Euclidean-based
instances from TSPLIB [45]. The TSPLIB instances are first
introduced in the context of the p-median problem in [10],
and have been widely used to test the performance of various
algorithms. For each instance, every point represents a facility,
and the distance between any two facilities is the Euclidean
distance between the two points. In this paper, the distance
matrix are derived from two TSPLIB instances, i.e., fl1400
and fl1577, with varying values of p from 50 to 500.

In this paper, the comparative results are drawn from two
sources, i.e., SOPHY (see Section V) and the best known re-
sults. The reason we choose these two forms of baseline results
are twofold. First, SOPHY serves as a baseline for comparison,
in that this variant differs from HIP-HOP only in the LLH
perspective. By comparing HIP-HOP with SOPHY, we would
be able to examine various aspects of the IPLLHs. Second, we
employ the best known results to evaluate the performances
of HIP-HOP objectively. The detailed information about these
baseline results are introduced as follows.

As the first baseline algorithm, SOPHY has the same
high level strategy as HIP-HOP, which is a grammar guided
framework. Meanwhile, for each category of LLH, a typical
operator is incorporated in SOPHY. The LLHs in SOPHY
include the following.

1) Local search for the Ising spin glass problem. In this pa-
per, the discrete hill climber with the flipping neighbor-
hood described in [46] is employed as the intensifying
LLH. This LLH is also used in HIP-HOP.

2) Mutation for the Ising spin glass problem. In this paper,
the bit-flip mutation is adopted. In this LLH, each spin
is randomly flipped with probability indicated by a
parameter mutation-rate.

3) Ruin-recreate for the Ising spin glass problem. In this
LLH, several spins are randomly selected, for which
the values are randomly assigned. The number of the
spins to be ruined is shake-strength × N, where N

indicates the total number of spins, and shake-strength
is a parameter.

4) Crossover for the Ising spin glass problem. In this paper,
the uniform crossover is adopted, i.e., the value of each
spin of the offspring solution is randomly assigned from
one of its parent solution.

5) Local search for the p-median problem. In this paper,
interchange is employed as the local search operator.
In particular, the implementation in [47] is adopted,
because of its high efficiency. However, we should

4http://www-user.tu-chemnitz.de/∼helmberg/rudy.tar.gz

TABLE I

High Level Strategy Parameter Configurations

note that in this LLH, a preprocessing routine has to
be conducted so that for each facility i, all the other
facilities j are ranked with respect to its distance to
facility i. This LLH is also used in HIP-HOP.

6) Mutation for the p-median problem. This LLH is ex-
tracted from [48]. In particular, for mutation, each me-
dian is swapped with a random nonmedian facility with
a probability indicated by mutation-rate.

7) Ruin-recreate for the p-Median Problem. Proposed in
[10], shake can be viewed as a special case of ruin-
recreate. This operator use a parameter to represents the
distance (shake-strength ×m, indicated by the number
of different medians) between the input solution and the
output solution.

8) Crossover for the p-median problem. This LLH is ex-
tracted from [48] as well, which is a uniform crossover.

Besides SOPHY, we also consider the best known results
in the literature to evaluate the performances of HIP-HOP and
SOPHY. In particular, the best known results may be provided
by global optima, best known solutions in the literature, or so-
lutions obtained by the state-of-the-art heuristic solvers, based
on the problem domain and the type of the instances. For each
Ising spin glass instance, we obtain the global optima using
the spin glass ground state server.5 Meanwhile, among the
p-median instances, the ORLIB instances have been exactly
solved [44]. Hence, the optimal objective values are suitable
for the evaluation of HIP-HOP. For the TSPLIB instances,
the global optima are not available, due to the scale of the
instances. More specifically, the instances derived from fl1400
have been studied in [10], [49], and [37], thus, the best known
objective values for these instances could be employed as the
baseline results. Accordingly, since fl1577 is used to derive
p-median instance for the first time, we adopt the state-of-the-
art heuristic solvers we could obtain to achieve the baseline
results over these instances. The solvers include POPSTAR,6

which originates from [49], as well as ALCMA [37]. For each
fl1577 instance, we run both POPSTAR and ALCMA for 30
times, with their default parameter configurations, to obtain
the baseline results.

B. Parameter Setting

In the proposed framework, there are two categories of
parameters, i.e., the parameters in high level strategy and those
in LLHs. In this paper, we choose to fix the parameters in the
high level strategy, meanwhile use an automated parameter
tuning tool for the parameter settings of the LLHs.

5http://www.informatik.uni-koeln.de/ls juenger/projects/sgs.html
6http://www2.research.att.com/∼mgcr/popstar/popstar.html



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

TABLE II

LLH Parameter Configurations for HIP-HOP

The reasons for this parameter configuration scheme are
twofold. On the one hand, the high level strategy parameters
are assigned with the same values for both HIP-HOP and
SOPHY so that the comparisons could be conducted in a
fair way. For example, the high level strategy parameters,
such as the population size and maximum derivation depth
of HIP-HOP are set with the same values as SOPHY, for the
convenience of comparison. Especially, we shall note that the
parameter num in HIP-HOP takes the local search executions
over both the original instance and the perturbed instance into
account, so that the search effort in HIP-HOP and SOPHY
are the same. On the other hand, for the LLH parameters, we
prefer the offline tuning to the online control paradigm, in that
we are more interested in the behavior of the LLHs and their
parameters as whole components, rather than the impact of
the LLH parameters on the framework. Besides, it would be
more difficult for experiments design and analysis, if the online
parameter control strategies is incorporated. More specifically,
we use irace to obtain the LLH parameter configurations for
both HIP-HOP and SOPHY. irace is an R implementation of
iterated F-Race [50], which is a well known offline parameter
tuning package.7

We adopt the default configurations of irace, except for
setting the maximum number of local search in HIP-HOP
and SOPHY to be 1000, so that the total tuning time is
acceptable. After the tuning process, the LLH parameter
configurations are presented in Tables II and III. In both tables,
the first column specifies the problem domain. The second
column presents the names of the LLH parameters. Then, the
values and the feasible ranges of the parameters are given in
columns 3 and 4, respectively. Note that for the Ising spin glass
problem, the ranges of i-mutation-strength and i-crossover-
strength are [0.1,1.9], in that the interactions between spins
could be negative. Besides these two parameters, all the other
parameters lie within the range [0.1,0.9]. Through preliminary
experiments,8 we find that irace is able to obtain parameter
configurations that are robust and effective.

C. Effectiveness Evaluation

In this subsection, we first evaluate the solution quality
that HIP-HOP and SOPHY could achieve, given the same
amount of search effort. After that, we investigate the dynamic
behavior of the two algorithms, by examining the trend of

7http://iridia.ulb.ac.be/irace/
8The results of the preliminary experimental analysis could be found at

http://oscar-lab.org/people/∼zren/hip-hop/.

TABLE III

LLH Parameter Configurations for SOPHY

Fig. 6. %gap comparison between HIP-HOP and SOPHY. (a) Ising Spin
Glass instances. (b) p-Median instances.

the average error along the search procedure, over several
representative instances.

For HIP-HOP and SOPHY, the parameters are assigned with
respect to Tables I–III, respectively. The instances are specified
in Section VI-A. Over each instance, HIP-HOP and SOPHY
are executed for 30 independent runs, and the comparisons
between the two algorithms are illustrated in Figs. 6 and 7.

We first present the relative comparison between HIP-HOP
and SOPHY, in terms of the solution quality obtained by the
algorithms. More specifically, we employ the relative gap and
the average error as the performance measurements, which are
defined as

%gap =
Cbest − Copt∣∣Copt

∣∣ × 100 (15)

%err =
Cavg − Copt∣∣Copt

∣∣ × 100 (16)

where Cbest and Cavg indicate the best and the average ob-
jective value obtained by each algorithm within the multiple
independent executions, and Copt represents the best known
objective value.

Taking Fig. 6(a) as an example, we shall now discuss
the performance comparison between HIP-HOP and SO-
PHY over Ising Spin Glass instances. In the subfigure, the
x-axis and the y-axis indicate the %gap of HIP-HOP and
SOPHY, respectively. More specifically, each point (x, y) in
the subfigure indicates that there are one or more instances
over which HIP-HOP’s %gap and SOPHY’s %gap are x

and y, respectively. For clarity, we plot the reference line
y = x. Accordingly, a point above the line implies that over
the corresponding instance(s), HIP-HOP outperforms SOPHY,
since HIP-HOP obtains smaller %gap.

From Fig. 6, several interesting phenomena could be ob-
served. First, in Fig. 6(a), most points lie above the reference
line, which implies that over the Ising spin glass instances,
the best solutions obtained by HIP-HOP are better than those



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: NEW INSIGHTS INTO DIVERSIFICATION OF HYPER-HEURISTICS 11

TABLE IV

Numerical Results Over TSPLIB p-Median Instances

Fig. 7. %err comparison between HIP-HOP and SOPHY. (a) Ising Spin
Glass instances. (b) p-Median instances.

of SOPHY, in that over the majority of the Ising spin glass
instances, the relative gaps achieved by HIP-HOP tend to be
less than those of SOPHY. Second, in Fig. 6(b), it can be
observed that the points are more sparse. The reason is that
the 40 ORLIB instances used in the experiments are relatively
easy, which could not tell the difference between the two
algorithms. For example, the origin of the figure represents
the comparison results over many ORLIB instances.

In particular, HIP-HOP is able to achieve better solutions
than the best known results in the literature over three
p-median benchmark instances. Hence, we report the detailed
results over these instances in Table IV.9 In the table, the first
column indicates the three instances. Columns 2–3 present
the best known objective values in the literature, as well as
the sources where the results are drawn. Then, the results
for SOPHY and HIP-HOP are given in columns 4–8 and
columns 9–13, respectively. For each algorithm, the results
consist of the best objective value among the 30 independent
executions, the median objective value (indicated by MED),
the average error (indicated by %err), the standard deviation
(indicated by SD), as well as the average execution time
(measured in seconds). From Table IV, we could observe that
the best results obtained by HIP-HOP are better than the best
known results in the literature. However, we can see that HIP-
HOP is slower than SOPHY, due to the fact that in IPLLHs,
extra subroutines are usually required to construct perturbed
instances, and/or maintain data structures for the solutions (see
Section VI-D for a more detailed discussion).

After comparing the best results obtained by HIP-HOP and
SOPHY, we proceed to compare the average performances
of the two algorithms, which is presented in Fig. 7. The
organization of Fig. 7 is the same as Fig. 6, except that %gap is
replaced by %err. We could observe that, the comparison of

9The complete numerical results could be found at http://oscar-lab.org/
people/∼zren/hip-hop/.

TABLE V

p-Value Obtained by Paired Wilcoxon’s Signed Rank Test,

HIP-HOP Versus SOPHY

Fig. 8. Performance against number of local search executions. (a) Ising spin
glass, 19×19-3. (b) p-Median, fl1400, p = 500.

%err exhibits similar trend as that of %gap, i.e., HIP-HOP
tends to obtain solutions with smaller average error than
SOPHY, over the instances of both the Ising spin glass problem
and the p-median problem.

Associated with the comparisons in Figs. 6–7, we also
conduct statistical tests, to draw confident conclusions whether
one algorithm outperforms the other. For the statistical test, we
employ nonparametric statistical test to detect the potential
difference between the performances of the two algorithms.
More specifically, the paired Wilcoxon’s signed rank test is
employed, with a null hypothesis stating that there exists no
difference between the results of the algorithms in comparison.
We consider the 95% confidence level (i.e., p-values below
0.05 are considered statistically significant), unless otherwise
stated. In Table V, we report the p-values returned by the
Wilcoxon’s test for both the %gap and %err comparisons.
From Table V, we could observe that for the two problem
domains, HIP-HOP outperforms SOPHY, in terms of both the
relative gap achieved and the average error obtained. In each
comparison scenario, the p-value returned by the Wilcoxon’s
test is always less than 0.05.

To gain more insight about the algorithms’ behavior, we
compare the solution quality trend as the search proceeds.
Fig. 8 presents the %err versus the number of local search
executions, for both HIP-HOP and SOPHY. In the figure,
the x-axis indicates the number of local search conducted,
and the y-axis represents the %err that an algorithm could
achieve. It can be observed that over both instances, the
curve corresponding with HIP-HOP always lies beneath that of
SOPHY, which implies that HIP-HOP is able to achieve better



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 9. Proportion of time consumed by different components. (a) Ising spin
glass instance. (b) p-Median instance.

results than SOPHY, given the same number of local search
executions. Besides, it can be observed that over all the rep-
resentative instances, after 10 000 executions of local search,
both HIP-HOP and SOPHY tend to have converged, which
to some extent implies that the numerical results comparison
between the two algorithms is reasonable.

D. Efficiency Evaluation

In Section VI-C, we observe that given the same amount
of search effort (indicated by the number of local search
executions), HIP-HOP is able to achieve better solution quality
than SOPHY. However, due to the maintenance overhead intro-
duced by IPLLHs, HIP-HOP requires more time to terminate.
Hence, in this subsection, we intend to examine the runtime
behavior of both HIP-HOP and SOPHY. In more detail, we
first investigate the reason why HIP-HOP is slow, by com-
paring the average time cost by each LLH related component
over representative instances. Second, since SOPHY is faster
than HIP-HOP, we proceed to check whether the comparison
results in Section VI-C would change, if SOPHY is given more
running time. Finally, we employ the run-time distribution
analysis [51], [52] to investigate the runtime behaviors of the
two algorithms.

Fig. 9 presents the average time that each component in
the two algorithms spent over the representative instances.
For example, Fig. 9(a) illustrates the comparison between
HIP-HOP and SOPHY over the Ising Spin glass instance
19×19-3. The components include local search (indicated
by LOCAL), IPLLHs, SPLLHs, as well as auxiliary routines
(indicated by AUX, including the transfer operator and the
repair operator described in Section V, as well as other
data structure maintenance procedures). From Fig. 9(a), the
following observations could be found over the spin glass
instance 19×19-3. First, the time of local search in HIP-HOP
is almost the same as that in SOPHY. The local search operator
spends 0.94s and 1.18s in HIP-HOP and SOPHY, respectively.
Second, IPLLHs are more time consuming than SPLLHs.
IPLLHs and SPLLHs spend 14.94s and 8.35s in HIP-HOP
and SOPHY, respectively. In total, HIP-HOP is more time
consuming, but roughly of the same order of magnitude as
SOPHY. Meanwhile, over the p-median instance fl1400 with p

= 500, different observations could be drawn. 1) Surprisingly,
over the p-median instance, local search costs less time in
HIP-HOP than in SOPHY. In Fig. 9(b), local search consumes
36.89s and 61.84s in HIP-HOP and SOPHY, respectively.

Fig. 10. %gap comparison, HIP-HOP versus SOPHY-LONG. (a) Ising spin
glass instances. (b) p-median instances.

Although the IPLLHs are time consuming, with these LLHs,
local search could be conducted more efficiently. 2) IPLLHs
are more time consuming than SPLLHs. This phenomenon
mainly results from the complexity of these two types of
LLHs. Over fl1400 with p = 500, IPLLHs consume 206.08s
in average, while SPLLHs cost 43.32s in average. 3) Over
the p-median instance, the auxiliary routines consumes the
majority proportion of the time in HIP-HOP. For example, over
fl1400 with p = 500, these routines costs 652.50s in average.
The main reason for this observation is that for the p-median
instances, whenever a perturbed instance is constructed, an
auxiliary data structure has to be maintained so that the local
search could be conducted efficiently [47]. The complexity of
this maintenance routine is O(m2 log m). However, in SOPHY,
this maintenance routine is only executed once during the
preprocessing phase. As a result, the repeated executions of
this routine lead to the fact that HIP-HOP is much slower
than SOPHY over the p-median instances.

Thus, a question naturally arises whether SOPHY could
outperform HIP-HOP, if given more search effort. To in-
vestigate this issue, a set of experiments are conducted as
follows. Over each instance, we assign more search effort
to SOPHY, so that the maximum cut off time of SOPHY
equals the average running time of HIP-HOP. Note that
since SOPHY is given longer execution time, the variant
version of SOPHY is indicated by SOPHY-LONG in this
experiment. Meanwhile, the results of HIP-HOP are kept the
same as in Section VI-C. Through this comparison scheme, we
could properly answer the question. The comparison results
are organized in the same way as in Section VI-C, i.e.,
Figs. 10 and 11 present the visual comparisons between HIP-
HOP and SOPHY-LONG, and Table VI lists the p-values
of the Wilcoxon’s test, in which the null hypothesis states
that both algorithms in comparison have similar performances.
From the comparison results, we observe that with more search
effort, the performances of SOPHY could be improved over
several instances. For example, when we compare the %err

of HIP-HOP and SOPHY-LONG over p-median instances
[see Fig. 11(b)], the statistical test confirms that HIP-HOP
outperforms SOPHY-LONG. However, the confidence level
decreases to 90% (0.05<p-value<0.1). HIP-HOP also per-
forms better than SOPHY-LONG in other comparison scenar-
ios, except when we compare the %gap of the two algorithms
over Ising Spin Glass instances [see Fig. 10(a)]. In this case,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: NEW INSIGHTS INTO DIVERSIFICATION OF HYPER-HEURISTICS 13

Fig. 11. %err comparison, HIP-HOP versus SOPHY-LONG. (a) Ising spin
glass instances. (b) p-median instances.

TABLE VI

p-Value Obtained by Paired Wilcoxon’s Signed Rank Test,

HIP-HOP Versus SOPHY-LONG

the null hypothesis could not be rejected, which means that the
two algorithms perform similarly over this problem domain. In
summary, the statistical test implies that HIP-HOP compares
favorably to, or at least similar as SOPHY, even if more
search effort is assigned to SOPHY. To further investigate the
dynamic characteristics of HIP-HOP and SOPHY, we would
examine the efficiency characteristics of the two algorithms,
by comparing the runtime behavior of HIP-HOP with that of
SOPHY.

To achieve this, the runtime distribution analysis is in-
troduced. More specifically, the analysis is conducted over
two typical instances, i.e., 19×19-3 for the Ising spin glass
problem, as well as fl1400 with p = 500 for the p-median
problem, respectively. Given an instance, the runtime distri-
bution is illustrated as follows. Each algorithm is executed
for 100 independent trials. For both HIP-HOP and SOPHY,
the parameters in the high level strategy are set with respect
to Table I, except for the stopping criterion. In the runtime
distribution analysis, the stopping criterion is changed from the
maximum number of local search executions to the maximum
cut off time (50s for the Ising spin glass problem, and 1000s
for the p-median problem, respectively). Besides, the LLH
parameters are set with respect to Tables II and III.

For each algorithm, its runtime distribution is represented by
a set of cumulative probability distribution curves determined
from the 100 runs of each algorithm. For example, Fig. 12(a)
illustrates the runtime distribution curves of HIP-HOP and
SOPHY over the Ising spin glass instance 19×19-3. In the
plot, the x-axis specifies the runtime, the y-axis indicates the
upper bound threshold, and the z-axis represents the proba-
bility that the algorithm achieves the corresponding solution
quality threshold (denoted as prtd). For each algorithm, the
point (x, y, z) in the plot indicates after time x, the algorithm
could achieve the solution quality better than y above the best
known upper bound with probability z.

Taking the p-median instance fl1400 with p = 500 as an
example [see Fig. 12(b)], the following observations can be
drawn. First, for different values of threshold, the runtime

Fig. 12. Run-time distribution plots. (a) Ising spin glass, 19×19−3.
(b) p-meidan, fl1400, p = 500.

distribution curves of HIP-HOP and SOPHY exhibit similar
trend as time elapses. At the beginning of the search process,
the runtime distribution curves of HIP-HOP lie below those of
SOPHY. This phenomenon holds for most values of threshold.
For example, when the value of threshold equals to 0.1%, prtd

of HIP-HOP is always less than that of SOPHY before 90s.
This implies that HIP-HOP converges slower than SOPHY,
which is mainly due to the relatively high complexity of the
IPLLHs and the auxiliary routines in HIP-HOP. However, as
the search proceeds, HIP-HOP is able to achieve higher prtd

compared with SOPHY. For example, over fl1400 with p =
500, after 122s, the prtd of HIP-HOP is always higher than
SOPHY, when the value of threshold equals to 0.1%. Another
interesting observation is that, even if the threshold is very
small (e.g., 0.01%), prtd of HIP-HOP could still reach 31%,
while prtd of SOPHY is 0. This to some extent demonstrates
the effectiveness of the IPLLHs. Over the Ising spin glass
instance 19×19-3, similar observations could also be obtained.
Over these instances, HIP-HOP tends to less effective than
SOPHY for the beginning of the search process. However,
if given sufficient time, HIP-HOP is able to achieve better
solution quality.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

VII. Conclusion

In this paper, we systematically investigate how to incor-
porate the instance perturbation methodologies into hyper-
heuristics. In particular, we propose the HIP-HOP framework,
which combines the generality of hyper-heuristics and the po-
tential ability of instance characteristics exploitation provided
by the instance perturbation methodologies. The contributions
of this paper could be summarized as follows.

1) We propose a set of instance perturbation-based low
level heuristics (IPLLHs), which are able to provide
the diversification mechanisms, meanwhile provide an
interface of exploiting the information of the problem
instances.

2) We develop a grammar guided high level strategy. Un-
like many existing instance perturbation-based method-
ologies [13], [17] in which the perturbation schedules are
predetermined, with a simple grammar, the feasibility
constraints of the output solution could be implicitly
satisfied.

3) We demonstrate the generality of the HIP-HOP frame-
work by the applications to two problem domains, i.e.,
the Ising spin glass problem and the p-median problem.

4) Extensive experiments validate the effectiveness of the
framework. Comparisons with SOPHY, as well as the
state-of-the-art results demonstrate that HIP-HOP is able
to achieve competitive results over various benchmark
instances.

Despite the promising results and the generality of the
HIP-HOP framework, there are still several limitations within
the framework, which deserve more future work. For example,
in this paper, the complexity of the proposed IPLLHs is
relatively high, especially for the p-median problem. This
drawback might be overcome by mechanisms, such as the
surrogate model [53]. Meanwhile, in this paper, the LLH pa-
rameters are offline-tuned with an automatic tuning tool. In
the future, we shall investigate the impact of the online-
adaptation of the parameters [4]. Finally, we shall investigate
the possibility of combining the IPLLHs and the SPLLHs, using
methodologies, such as coevolution [54], hybridization, etc.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions.

References

[1] A. S. Fukunaga, “Automated discovery of local search heuristics for
satisfiability testing,” Evol. Comput., vol. 16, no. 1, pp. 31–61, 2008.

[2] E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward, “Automating
the packing heuristic design process with genetic programming,” Evol.
Comput., vol. 20, no. 1, pp. 63–89, 2012.

[3] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, “A genetic
programming hyper-heuristic approach for evolving 2-D strip packing
heuristics,” IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 942–958,
Dec. 2010.

[4] Z. Ren, H. Jiang, J. Xuan, and Z. Luo, “Hyper-heuristics with low level
parameter adaptation,” Evol. Comput., vol. 20, no. 2, pp. 189–227, 2012.

[5] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Wood-
ward, “A classification of hyper-heuristic approaches,” in Handbook of
Metaheuristics. Berlin, Germany: Springer, 2010, pp. 449–468.

[6] P. Cowling, G. Kendall, and L. Han, “An investigation of a hyperheuristic
genetic algorithm applied to a trainer scheduling problem,” in Proc.
IEEE Congr. Evol. Comput., vol. 2. May 2002, pp. 1185–1190.

[7] P.-C. Chen, G. Kendall, and G. Berghe, “An ant based hyper-heuristic
for the travelling tournament problem,” in Proc. IEEE Symp. Comput.
Intell. Schedul., Apr. 2007, pp. 19–26.

[8] E. K. Burke, M. R. Hyde, and G. Kendall, “Grammatical evolution
of local search heuristics,” IEEE Trans. Evol. Comput., vol. 16, no. 3,
pp. 406–417, Jun. 2012.

[9] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker,
M. Gendreau, et al., “Hyflex: A benchmark framework for cross-domain
heuristic search,” in Proc. Eur. Conf. Evol. Comput. in Combinatorial
Optimisation, 2012, pp. 136–147.

[10] P. Hansen and N. Mladenović, “Variable neighborhood search for the
p-median,” Loc. Sci., vol. 5, no. 4, pp. 207–226, 1997.

[11] E. Özcan, B. Bilgin, and E. Korkmaz, “Hill climbers and mutational
heuristics in hyperheuristics,” in Proc. PPSN., Sep. 2006, pp. 202–211.

[12] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35,
no. 3, pp. 268–308, 2003.

[13] J. Gu and X. Huang, “Efficient local search with search space smoothing:
A case study of the traveling salesman problem (TSP),” IEEE Trans.
Syst., Man, Cybern., vol. 24, no. 5, pp. 728–735, May 1994.

[14] J. Schneider, M. Dankesreiter, W. Fettes, I. Morgenstern, M. Schmid, and
J. Maria Singer, “Search-space smoothing for combinatorial optimization
problems,” Physica A, vol. 243, no. 1, pp. 77–112, 1997.

[15] M. Ninio and J. J. Schneider, “Weight annealing,” Physica A, vol. 349,
no. 3, pp. 649–666, 2005.

[16] K.-H. Loh, B. Golden, and E. Wasil, “Solving the one-dimensional bin
packing problem with a weight annealing heuristic,” Comput. Oper. Res.,
vol. 35, no. 7, pp. 2283–2291, 2008.

[17] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil, “See the forest
before the trees: Fine-tuned learning and its application to the traveling
salesman problem,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans,
vol. 28, no. 4, pp. 454–464, Jul. 1998.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: Freeman,
1979.

[19] G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans, “Data pertur-
bation for escaping local maxima in learning,” in Proc. 18th Nat. Conf.
Artif. Intell., 2002, pp. 132–139.

[20] R. Stallman, “The GNU manifesto,” Dr. Dobbs J. Softw. Tools, vol. 10,
no. 3, pp. 30–35, 1985.

[21] R. Qu, E. K. Burke, and B. McCollum, “Adaptive automated con-
struction of hybrid heuristics for exam timetabling and graph colouring
problems,” Eur. J. Oper. Res., vol. 198, no. 2, pp. 392–404, 2009.

[22] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan,
et al., “Hyper-heuristics: A survey of the state of the art,” J. Oper. Res.
Soc., vol. 64, no. 12, pp. 1695–1724, Dec. 2013.

[23] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach
to scheduling a sales summit,” in Proc. 3rd Prac. Theory Autom.
Timetabling, 2001, pp. 176–190.

[24] P. Cowling and K. Chakhlevitch, “Hyperheuristics for managing a large
collection of low level heuristics to schedule personnel,” in Proc. IEEE
Congr. Evol. Comput., Dec. 2003, pp. 1214–1221.

[25] D. Meignan, A. Koukam, and J.-C. Créput, “Coalition-based meta-
heuristic: A self-adaptive metaheuristic using reinforcement learning and
mimetism,” J. Heurist., vol. 16, no. 6, pp. 859–879, 2010.

[26] G. Ochoa, J. Vázquez-Rodrı́guez, S. Petrovic, and E. Burke, “Dispatch-
ing rules for production scheduling: A hyper-heuristic landscape analy-
sis,” in Proc. IEEE Congr. Evol. Comput., May 2009, pp. 1873–1880.

[27] G. Ochoa, R. Qu, and E. K. Burke, “Analyzing the landscape of a
graph based hyper-heuristic for timetabling problems,” in Proc. 11th
Ann. Conf. Genetic Evol. Comput., 2009, pp. 341–348.

[28] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill,
“Grammar-based genetic programming: A survey,” Genetic Program.
Evol. Mach., vol. 11, no. 3, pp. 365–396, 2010.

[29] R. E. Keller and R. Poli, “Linear genetic programming of parsimonious
metaheuristics,” in Proc. IEEE Congr. Evol. Comput., Sep. 2007,
pp. 4508–4515.

[30] P. Ross, S. Schulenburg, J. G. Marı́n-Blázquez, and E. Hart, “Hyper-
heuristics: Learning to combine simple heuristics in bin-packing
problems,” in Proc. 4th Ann. Genetic Evol. Comput., Jul. 2002,
pp. 942–948.

[31] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu, “A
graph-based hyper-heuristic for educational timetabling problems,” Eur.
J. Oper. Res., vol. 176, no. 1, pp. 177–192, 2007.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: NEW INSIGHTS INTO DIVERSIFICATION OF HYPER-HEURISTICS 15

[32] Y. S. Ong, M. H. Lim, N. Zhu, and K. W. Wong, “Classification of
adaptive memetic algorithms: A comparative study,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 36, no. 1, pp. 141–152, Feb. 2006.

[33] B. Codenotti, G. Manzini, L. Margara, and G. Resta, “Perturbation:
An efficient technique for the solution of very large instances of the
euclidean TSP,” INFORMS J. Comput., vol. 8, no. 2, pp. 125–133,
1996.

[34] I. Charon and O. Hudry, “Application of the noising method to the
travelling salesman problem,” Eur. J. Oper. Res., vol. 125, no. 2,
pp. 266–277, 2000.

[35] H. Jiang, X. Zhang, G. Chen, and M. Li, “Backbone analysis and
algorithm design for the quadratic assignment problem,” Sci. China
Ser. F, vol. 51, no. 5, pp. 476–488, May 2008.

[36] U. Benlic and J. K. Hao, “A multilevel memetic approach for
improving graph k-partitions,” IEEE Trans. Evol. Comput., vol. 15,
no. 5, pp. 624–642, Oct. 2011.

[37] Z. Ren, H. Jiang, J. Xuan, and Z. Luo, “An accelerated-limit-crossing-
based multilevel algorithm for the p-median problem,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 42, no. 4, pp. 1187–1202, Aug. 2012.

[38] J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the large scale next
release problem with a backbone-based multilevel algorithm,” IEEE
Trans. Softw. Eng., vol. 38, no. 5, pp. 1195–1212, Sep.–Oct. 2012.

[39] C. Voudouris and E. Tsang, “Guided local search and its application
to the traveling salesman problem,” Eur. J. Oper. Res., vol. 113, no. 2,
pp. 469–499, 1999.

[40] M. Pelikan and D. Goldberg, “Hierarchical BOA solves ising spin
glasses and MAXSAT,” in Proc. 5th Ann. Conf. Genetic Evol. Comput.,
2003, p. 213.

[41] B. Monien and I. H. Sudborough, “Min cut is NP-complete for edge
weighted trees,” Theor. Comput. Sci., vol. 58, no. 1, pp. 209–229,
1988.

[42] O. Kariv and S. L. Hakimi, “An algorithmic approach to network
location problems. II: The p-medians,” SIAM J. Appl. Math., vol. 37,
no. 3, pp. 539–560, 1979.

[43] I. H. Osman and G. Laporte, “Metaheuristics: A bibliography,” Ann.
Oper. Res., vol. 63, no. 5, pp. 511–623, 1996.

[44] J. E. Beasley, “A note on solving large p-median problems,” Eur.
J. Oper. Res., vol. 21, no. 2, pp. 270–273, 1985.

[45] G. Reinelt, “TSPLIB: A traveling salesman problem library,” ORSA
J. Comput., vol. 3, no. 4, pp. 376–384, 1991.

[46] M. Pelikan and A. Hartmann, “Searching for ground states of ising
spin glasses with hierarchical BOA and cluster exact approximation,”
Scalable Optimization Via Probabilistic Modeling. Berlin/Heidelberg,
Germany: Springer, 2006, pp. 333–349.

[47] M. G. C. Resende and R. F. Werneck, “On the implementation of a
swap-based local search procedure for the p-median problem,” in Proc.
5th Workshop Algor. Eng. Exp., 2003, pp. 119–127.

[48] E. Correa, M. Steiner, A. Freitas, and C. Carnieri, “A genetic algorithm
for the p-median problem,” in Proc. 3th Genetic Evol. Comput. Conf.,
2001, pp. 1268–1275.

[49] M. G. C. Resende and R. F. Werneck, “A hybrid heuristic for the
p-median problem,” J. Heurist., vol. 10, no. 1, pp. 59–88, 2004.

[50] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-race and
iterated f-race: An overview,” in Experimental Methods for the Analysis
of Optimization Algorithms. Berlin/Heidelberg, Germany: Springer,
2010, pp. 311–336.

[51] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and
Applications. San Mateo, CA, USA: Morgan Kaufmann, 2005.

[52] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo, “Franken-
stein’s PSO: A composite particle swarm optimization algorithm,” IEEE
Trans. Evol. Comput., vol. 13, no. 5, pp. 1120–1132, Oct. 2009.

[53] D. Lim, Y. Jin, Y. S. Ong, and B. Sendhoff, “Generalizing surrogate-
assisted evolutionary computation,” IEEE Trans. Evol. Comput., vol. 14,
no. 3, pp. 329–355, Jun. 2010.

[54] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization us-
ing cooperative coevolution,” Inf. Sci., vol. 178, no. 15, pp. 2985–2999,
2008.

Zhilei Ren received the B.Sc. degree in software
engineering and the Ph.D. degree in computational
mathematics from the Dalian University of Technol-
ogy, Dalian, China, in 2007 and 2013, respectively.

He is currently a Post-Doctoral Researcher with
the Dalian University of Technology. His current
research interests include evolutionary computation
and its applications in software engineering.

Dr. Ren is a member of the ACM and the CCF.

He Jiang (M’10) received the Ph.D. degree in
computer science from the University of Science and
Technology of China, Hefei, China.

He is currently a Professor with the Dalian Uni-
versity of Technology, Dalian, China. His current
research interests include computational intelligence
and its applications in software engineering and data
mining.

Dr. Jiang is also a member of the ACM and the
CCF.

Jifeng Xuan received the B.Sc. degree in software
engineering and the Ph.D. degree in computational
mathematics from the Dalian University of Technol-
ogy, Dalian, China, in 2007 and 2013, respectively.

He is currently a Post-Doctoral Researcher with
INRIA Lille–Nord Europe, Lille, France. His current
research interests include software debugging, min-
ing software repositories, and search based software
engineering.

Dr. Xuan is a member of the ACM and the China
Computer Federation.

Yan Hu received the B.Sc. and Ph.D. degrees in
computer science from the University of Science
and Technology of China, Hefei, China, in 2002 and
2007, respectively.

He is currently an Assistant Professor with the
Dalian University of Technology, Dalian, China. His
current research interests include model checking,
program analysis, and software engineering.

Dr. Hu is a member of the ACM and the CCF.

Zhongxuan Luo received the B.Sc. and M.Sc. de-
grees in computational mathematics from Jilin Uni-
versity, Jilin, China, in 1985 and 1988, respectively,
and the Ph.D. degree in computational mathematics
the Dalian University of Technology, Dalian, China,
in 1991.

He is currently a Professor with the School of Soft-
ware, Dalian University of Technology. His current
research interests include multivariate approximation
theory and computational geometry.


