
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS 1

An Accelerated-Limit-Crossing-Based Multilevel
Algorithm for the p-Median Problem

Zhilei Ren, He Jiang, Member, IEEE, Jifeng Xuan, and Zhongxuan Luo

Abstract—In this paper, we investigate how to design an efficient
heuristic algorithm under the guideline of the backbone and the
fat, in the context of the p-median problem. Given a problem
instance, the backbone variables are defined as the variables
shared by all optimal solutions, and the fat variables are defined
as the variables that are absent from every optimal solution.
Identification of the backbone (fat) variables is essential for the
heuristic algorithms exploiting such structures. Since the existing
exact identification method, i.e., limit crossing (LC), is time con-
suming and sensitive to the upper bounds, it is hard to incorporate
LC into heuristic algorithm design. In this paper, we develop the
accelerated-LC (ALC)-based multilevel algorithm (ALCMA).
In contrast to LC which repeatedly runs the time-consuming
Lagrangian relaxation (LR) procedure, ALC is introduced in
ALCMA such that LR is performed only once, and every back-
bone (fat) variable can be determined in O(1) time. Meanwhile,
the upper bound sensitivity is eliminated by a dynamic pseudo
upper bound mechanism. By combining ALC with the pseudo
upper bound, ALCMA can efficiently find high-quality solutions
within a series of reduced search spaces. Extensive empirical
results demonstrate that ALCMA outperforms existing heuristic
algorithms in terms of the average solution quality.

Index Terms—Accelerated limit crossing (ALC), backbone,
configuration landscape, fat, multilevel, p-median problem.

I. INTRODUCTION

G IVEN a set of users and potential facilities, the goal of the
p-median problem [27], [32] is to select a predetermined

number of facilities as the medians so as to minimize the
total distance that each user must traverse to reach its nearest
median. Due to its numerous real-world applications (e.g., plant
location allocation [8], network design [19], [40], [41], sensor
deployment [13], and data mining [3]), the p-median problem
has attracted much research attention in combinatorial opti-
mization to date. Since it has been shown to be NP-hard [18],
many heuristic algorithms have been proposed in the literature
to achieve near optimal solutions in reasonable running time,

Manuscript received June 28, 2011; revised November 26, 2011; accepted
January 22, 2012. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 61175062, 60805024, and 61033012,
and in part by the “Software + X” funding of Dalian University of Technology.
This paper was recommended by Associate Editor H. Takagi.

Z. Ren and Z. Luo are with the School of Mathematical Sciences, Dalian Uni-
versity of Technology, Dalian 116621, China (e-mail: ren@mail.dlut.edu.cn;
zxluo@dlut.edu.cn).

H. Jiang and J. Xuan are with the School of Software, Dalian University
of Technology, Dalian 116621, China (e-mail: hejiang@ieee.org; xuan@mail.
dlut.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2012.2188100

including variable neighborhood search (VNS) [15], genetic
algorithm (GA) [17], tabu search (TS) [35], scatter search (SS)
[10], ant colony optimization (ACO) [23], simulated annealing
(SA) [28], and population-based hybrid search (PBS) [30].
Among these published algorithms, PBS presents the state-of-
the-art results [30].

In recent years, a lot of efforts have been focused on solving
problems under the guideline of the backbone and the fat. Given
a problem instance, the backbone (fat) consists of those vari-
ables that appear in all (none) of optimal solutions. According
to their definitions, once the backbone and the fat are properly
set, the problem solving process can be greatly improved over
a reduced search space. Motivated by such an idea, many new
heuristic algorithms have been presented for those traditional
combinatorial optimization problems, including the traveling
salesman problem (TSP) [52], the quadratic assignment prob-
lem (QAP) [25], and the Maximum SATisfiability problem
(Max SAT) [51]. Since it is usually intractable to directly
achieve the backbone (fat) variables, these new algorithms
usually approximate them with the common (absent) parts
of some local optima1 based on the observation that many
local optima cluster around optimal solutions to form a “big
valley” structure [2], [24], [49], [50]. However, there are some
potential drawbacks lying in these “big-valley”-based pseudo
backbones (fats). First, the “big valley” structure varies sharply
from problem to problem. For example, in the context of TSP,
a local optimum to ATT532 (which is a well-known instance
from TSPLIB) shares 70%–80% edges with an optimal tour [2].
In [25], the authors observe that, for QAP, a local optimum to
selected instances (e.g., Chr25a from QAPLIB) has a smaller
portion (around 20%) of common variables with an optimal
solution. Furthermore, this structure may even vary over dif-
ferent instances of the same problem. In [26], the authors state
that the “big valley” structure (measured by the fitness-distance
correlation) varies greatly from instance to instance, in the
context of QAP. Second, as stated in [52], the pseudo backbone
(fat) must be constructed from “unbiased samples” of local
optima, which is still a great challenge.

We address the backbone and the fat in the context of the
p-median problem. In contrast to the “big valley” structure-
based approaches, we extract the backbone and the fat with
limit crossing (LC), proposed by Climer and Zhang [5] in
solving TSP. The key idea of LC stems from the fact that the
exclusion (inclusion) of a backbone (fat) variable must result

1Given the neighborhood definition, local optima refer to those solutions that
have lower or equal (suppose that the problem to be solved is a minimization
problem) objective cost than all their neighbors [16].

1083-4419/$31.00 © 2012 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

in an increase of the optimal cost (i.e., the objective cost of
optimal solutions) for a minimization problem instance. Since
it is usually intractable to retrieve optimal solutions, LC [5]
introduces a relaxed method instead by employing an upper
bound and a lower bound. If the lower bound of the modified
instance exceeds the upper bound of the original instance, the
variable can be detected as a backbone (fat) variable.

In this paper, we focus on the algorithm design that exploits
the structural information in the form of backbone and fat.
First, we propose LC in the context of the p-median problem.
We show by some preliminary experiments that LC is time
consuming and heavily depends upon the tightness of both
the lower bound and the upper bound. Second, we develop an
accelerated LC (ALC). Compared with LC which repeatedly
runs the time-consuming procedure of Lagrangian relaxation
(LR), ALC significantly saves the overall running time in
such a way that LR only needs to be executed once. Third,
we propose the ALC-based multilevel algorithm (ALCMA).
To eliminate the dependence on both the lower bound and
the upper bound, a pseudo upper bound is dynamically main-
tained in ALCMA. With ALC and the pseudo upper bound,
ALCMA can easily retrieve some pseudo backbone (fat) vari-
ables and search efficiently within those search spaces re-
stricted by fixing (excluding) these pseudo backbone (fat)
variables. Extensive experiments over various benchmark in-
stances (ORLIB, SL, GR, RW, and TSPLIB) demonstrate the
performance of ALCMA. Over the total of 171 benchmark
instances, ALCMA can achieve 52 new best solutions and
locate 92 of the currently best known solutions. Moreover,
statistical tests confirm that, over these test instances, the
overall performance of ALCMA is better than that of the
state-of-the-art algorithms in terms of the average solution
quality. Finally, the configuration landscape analysis is em-
ployed to investigate both the strength and the weakness of the
framework.

The rest of this paper is organized as follows. Section II
presents the related work of both the backbone (fat) and the
p-median problem. Then, in Section III, we present LC and
ALC. In Section IV, the new algorithm ALCMA is proposed.
Experimental results are given in Section V. Section VI briefly
concludes this paper.

II. RELATED WORK

A. Backbone and Fat

The concept of the backbone is first proposed by Parkes [29]
when studying the hardness of problem solving for the SATisfi-
ability problem (SAT). Parkes [29] observes that the number
of backbone variables is highly correlated with the hardness
of problem instances. In [5], Climer and Zhang propose the
concept of the fat and develop the method of LC to extract some
backbone (fat) variables.

In the literature, there has been some research about the
computational complexity of searching for the backbone vari-
ables. Kilby et al. [21] prove that there is no polynomial time
algorithm to obtain all the backbone variables of TSP under the
assumption that P �= NP . Similar results have been presented

for SAT [20] and QAP [25] as well. Hence, many researchers
achieve the pseudo backbone (fat) based on the “big valley”
structure. This structure stems from the empirical observation
by Boese [2] in TSP that a local optimal tour shares numerous
common edges with an optimal tour. Afterward, similar char-
acteristics have also been found in many other problems, e.g.,
QAP [25] and Max SAT [51].

With these “big-valley”-based pseudo backbone (fat) vari-
ables, a few heuristic algorithms have been presented. These
algorithms intend to shrink the search space by fixing (ex-
cluding) the pseudo backbone (fat) variables and explore the
reduced search space with some existing heuristic algorithms.
For example, Cook and Seymour [7] develop a tour merging
approach for TSP, in which a new search space is constructed
by merging the variables that appear in a set of local optima.
Jiang et al. [25] propose a pseudo backbone guided algorithm
for QAP. Some other relevant algorithms include those in [42]
and [43].

In contrast to the “big valley” structure, LC is a strategy
proposed by Climer and Zhang [5] for detecting the backbone
(fat) variables in TSP. Theoretically, an edge must belong to
the backbone if removing it from a TSP instance leads to the
increase of the optimal cost. Since it is usually intractable
to retrieve optimal solutions, a relaxed method is introduced
in LC by employing an upper bound and a lower bound.
When the lower bound for the modified instance exceeds
the upper bound for the original instance, the edge can be
claimed to be a backbone edge. The fat can be determined in a
similar way.

B. p-Median Problem

In this section, we first introduce the formal definition of the
p-median problem, as well as the backbone and the fat to a given
p-median instance. Then, existing heuristics for the p-median
problem are briefly reviewed.

Definition 1: Given a set F = {1, 2, . . . ,m} of m poten-
tial facilities, a set U = {1, 2, . . . , n} of n users, a matrix
D = (dij)n×m, where dij represents the distance between the
user i and the facility j for all i ∈ U and j ∈ F , as well
as a predefined p < m, the p-median instance is denoted as
PMP (F,U,D, p). A solution to PMP (F,U,D, p) is a subset
J ⊂ F , |J | = p, whose cost is defined as CJ(F,U,D, p) =∑

i∈U minj∈J dij . The p-median problem aims to find a so-
lution J∗ that minimizes the cost, i.e., CJ∗(F,U,D, p) =
minJ∈Π CJ(F,U,D, p), where Π is the set of all the solutions.

Definition 2: Given a p-median instance PMP (F,U,D, p),
let Π∗ = {J∗

1 , J∗
2 , . . . , J∗

q} be the set of all the optimal so-
lutions to PMP (F,U,D, p), where q = |Π∗| represents the
number of optimal solutions. The backbone of the p-median
instance PMP (F,U,D, p) is defined as bone(F,U,D, p) =⋂

1≤i≤q J∗
i , and the fat is similarly defined as fat(F,U,D, p) =

F\
⋃

1≤i≤q J∗
i .

Many heuristic algorithms have been developed for the p-
median problem. For example, there are VNS [15], hybrid
heuristic [33], etc. Moreover, a lot of nature-inspired meta-
heuristics are also proposed, such as GA [17], TS [35], SS [10],
ACO [23], SA [28], and PBS [30].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: ALCMA FOR THE p-MEDIAN PROBLEM 3

Although the concepts of the backbone and the fat have
not been cited in the context of the p-median problem,
Rosing et al. develop a series of heuristic algorithms (i.e.,
HC and its variants [36]–[39]) under a similar idea to the
“big valley” structure. These algorithms consist of two stages.
During the first stage (denoted as the HC-S1 reduction), a set
of local optima is randomly sampled using the interchange
operator [47], and a concentration set is constructed by merging
all the medians appearing in these local optima. Then, during
the second stage (denoted as the HC-S2 solving), the search
is conducted over the concentration set either with some exact
algorithms [37] or with a local search operator (namely, the
2-opt operator [36]). Furthermore, the medians that appear in all
the sampled local optima are fixed and held unchanged during
the second stage.

III. EXTRACTING BACKBONE AND FAT VARIABLES

A. LC

In this section, we first validate the scheme of LC for the
p-median problem and propose the framework of LC.

Definition 3: Given a p-median instance PMP (F,U,D, p)
and a facility set K ⊆ F , let SF (K) = {J : J ∈ Π,
K ⊆ J} be the set of solutions, including K, and let
¬SF (K) = {J : J ∈ Π,K ∩ J = ∅} be the set of solutions
containing no facility in K, where Π is the set of all
the solutions to PMP (F,U,D, p). Given a facility
f ∈ F , let Copt(¬f) = minJ∈¬SF ({f}) CJ(F,U,D, p),
Copt(f) = minJ∈SF ({f}) CJ(F,U,D, p), and Copt(Π) =
minJ∈Π CJ(F,U,D, p).

Proposition 1: Given a p-median instance
PMP (F,U,D, p) and a facility f ∈ F , the facility f
must be a backbone variable if LB(¬f) > UBΠ, where
LB(¬f) is a lower bound of Copt(¬f) and UBΠ is an upper
bound of Copt(Π).

Proof: Otherwise, there must exist an optimal solution
J∗ ∈ Π such that f /∈ J∗. Hence, we have that J∗ ∈ ¬SF ({f})
which implies that Copt(¬f) = CJ∗(F,U,D, p). According
to the assumption LB(¬f) ≤ Copt(¬f), it can be inferred
that LB(¬f) ≤ CJ∗(F,U,D, p) = Copt(Π) ≤ UBΠ holds. It
contradicts with the assumption that LB(¬f) > UBΠ. This
proposition is proved. �

Similarly, we can easily verify the following proposition.
Proposition 2: Given a p-median instance

PMP (F,U,D, p) and a facility f ∈ F , the facility f
must be a fat variable if LB(f) > UBΠ, where LB(f) is
a lower bound of Copt(f) and UBΠ is an upper bound of
Copt(Π).

The framework of LC is presented in Algorithm 1. Given
a p-median instance, every facility is checked whether it is a
backbone (fat) variable with respect to Propositions 1 and 2.

B. Upper Bound and Lower Bound

As shown in Algorithm 1, both the upper bound and the lower
bound are required to check whether a facility is a backbone
(fat) variable. Obviously, the cost of any solution to the p-

median instance can be taken as the upper bound. Therefore, we
can simply use an existing heuristic algorithm to find an upper
bound. On the other hand, the lower bound should be calculated
for every facility. In this paper, we employ an LR method to
calculate the lower bounds [i.e., LB(f) and LB(¬f)]. In this
section, we first show the LR method to calculate a lower bound
LBΠ of Copt(Π) and then demonstrate how to adjust it for
computing LB(f) and LB(¬f).

The p-median problem can be modeled as the following
integer programming formulations [44]:

min
n∑

i=1

m∑
j=1

dijxij (1)

s.t.
m∑

j=1

xij = 1, i ∈ {1, 2, . . . , n} (2)

m∑
j=1

yj = p (3)

xij ≤ yj , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m} (4)

xij , yj ∈ {0, 1}, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}.
(5)

In the aforementioned formulations, a solution consists of
an allocation matrix Xn×m and a vector Ym indicating which
facilities are chosen, where xij = 1 means that the user i
is assigned to the facility j, and xij = 0 otherwise; yj = 1
indicates that the facility j is selected as a median, and yj = 0
otherwise. Constraints (2) and (4) ensure that each user is
allocated to only one median. Constraint (3) guarantees that
exactly p facilities are chosen as the medians, and constraint
(5) presents the integer conditions.

For the aforementioned formulations, the lower bound
LB(Π) can be achieved by solving the relaxed version. In
the literature, several LR methods [1], [6], [44] have been
developed for relaxing a p-median instance. In this paper, we
adopt the LR method proposed by Seene and Lorena [44] to
calculate the lower bound. In [44], the formulations of the p-
median problem are relaxed by removing constraint (2) and,
meanwhile, introducing a penalty for violating the removed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

constraint; thus, the problem can be transformed into a relaxed
form as follows:

min
n∑

i=1

m∑
j=1

dijxij + t

n∑
i=1

λi

⎛
⎝1 −

m∑
j=1

xij

⎞
⎠

= min
n∑

i=1

m∑
j=1

(dij − tλi)xij + t
n∑

i=1

λi (6)

s.t. constraints (3)–(5).
Given t and λ, the second term of the function (6) is a

constant, and the first term can be easily solved by decomposing
it into n subproblems

min
m∑

j=1

(dij − tλi)xij , i ∈ {1, 2, . . . , n} (7)

s.t. constraints (3)–(5).
As shown in [44], each subproblem can be solved by a simple

enumeration as follows. For each facility j, an auxiliary cost
is defined as βj =

∑n
i=1 min(0, dij − tλi). All these auxiliary

costs are sorted in an ascending order: βk1 ≤ βk2 ≤ · · · ≤ βkm
.

Let the index set I = {k1, k2, . . . , kp}. Then, the entries of Y
are set with respect to the following equation, i.e., the facilities
k1, k2, . . . , kp are chosen as the medians:

yj =
{

1, j ∈ I
0, otherwise.

(8)

Accordingly, the allocation variables of X are set to

xij =
{

1, yj = 1, dij − tλi < 0
0, otherwise.

(9)

For any t and λ, [44] shows that the lower bound LBΠ can
be calculated by

LBΠ =
m∑

j=1

βjyj + t

n∑
i=1

λi =
p∑

j=1

βkj
+ t

n∑
i=1

λi. (10)

The framework of LR is presented in Algorithm 2. Following
[44], the parameters t and λ can be improved using the surro-
gate heuristic (see [44] for detail), and the stopping criterion is
set to terminating the procedure if no better lower bound can be
achieved within 100 iterations.

We can incorporate LR into the framework of LC as follows.
When calculating LB(¬f), yf = 0 should be introduced as
an additional constraint, i.e., at each iteration of LR, the p
smallest entries of β, except βf , are selected. Thus, LR can be
employed to calculate LB(¬f) by replacing (10) and LBΠ in
Algorithm 2 with (11) and LB(¬f), respectively.

LB(¬f) =
{ ∑p

j=1 βkj
+ βkp+1 − βf + t

∑n
i=1 λi, f ∈ I∑p

j=1 βkj
+ t

∑n
i=1 λi, f �∈ I .

(11)

Similarly, for LB(f), yf = 1 should be introduced as an
additional constraint. Then, (10) and LBΠ in Algorithm 2

should be replaced with (12) and LB(f), respectively, for
calculating LB(f).

LB(f) =
{∑p

j=1 βkj
+ t

∑n
i=1 λi, f ∈ I∑p−1

j=1 βkj
+ βf + t

∑n
i=1 λi, f �∈ I .

(12)

With the lower bounds calculated by LR, together with an
upper bound provided by any solution, we can apply LC to
identify the backbone (fat) variables in polynomial running
time. However, one potential drawback of this approach is that
LR has to be run at least once for every facility. Therefore, this
approach might be very time consuming.

C. ALC

In the framework of LR, it can be observed that, given
feasible values of t and λ, the lower bounds LB(¬f) and
LB(f) for each facility f can be calculated with (11) and
(12) efficiently. Consequently, extensively much running time
is spent on iteratively improving the parameters t and λ since
LR has to be performed for each facility from scratch. Thus,
given any facility f ∈ F , we can greatly speed up the procedure
of computing LB(¬f) if t and λ required in (11) and (12) are
precalculated. As a solution, instead of running LR for each
facility to identify the backbone (fat) variables, we perform LR
[with (10)] only once and pass the values of t∗ and λ∗ obtained
by LR to the simplified LR algorithm (SLR).

When SLR takes in t∗ and λ∗, which are achieved in LR
for calculating LBΠ, the sorted entries of β in SLR must be
identical to that of β∗ achieved in LR. Therefore, SLR for
calculating LB(¬f) can be further simplified to directly apply

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: ALCMA FOR THE p-MEDIAN PROBLEM 5

(11) to those sorted entries of β∗. In a similar way, we can
compute LB(f) by applying (12) to β∗. Under the earlier
discussion, we present the framework of ALC in Algorithm 4.
First, an existing heuristic algorithm is called to retrieve an
upper bound UBΠ. Then, we obtain those sorted entries of β∗

by calling LR to find the lower bound LBΠ. In the remaining
part of ALC, every facility is checked whether it is a backbone
(fat) variable. In ALC, we use SLR instead of LR to calculate
LB(¬f). As we have discussed, SLR will be further simplified
to directly employ (11) to those sorted entries of β∗ in LR. In
a similar way, we can also apply (12) to those entries of β∗ for
computing LB(f). In ALC, all facilities are divided into two
categories such that a lot of running time can be further saved
as follows.

For facility f ∈ I∗, we can easily infer from (11) that
LB(¬f) = LBΠ − β∗

f + β∗
kp+1

. Meanwhile, we have that
LB(f) = LBΠ as well. Note that LBΠ < UBΠ, so it makes
no sense to compare LB(f) with UBΠ for determining whether
f belongs to the fat variable or not. Therefore, we only check
whether this facility is a backbone variable in the for loop of
ALC.

For facility f �∈ I∗, we can draw from (12) that LB(f) =
LBΠ − β∗

kp
+ β∗

f . Meanwhile, we can have that LB(¬f) =
LBΠ. Hence, this facility cannot be detected as a backbone
variable in ALC, and we only compare LB(f) with UBΠ to
check whether this facility belongs to the fat.

In contrast to LC, the advantage of ALC lies in that the time-
consuming procedure of LR only needs to be executed once.
For every facility, its lower bound can be easily returned in
O(1) running time. However, a potential risk of ALC is that
the lower bounds for those facilities may not be tight enough
since t and λ have not been well tuned for every facility.

To evaluate the influences of the lower bounds (i.e., LB(¬f)
and LB(f) for each facility f) and the upper bound [i.e.,
UB(Π)], some experiments are conducted over several typi-
cal benchmark instances from ORLIB (pmed15 and pmed40),
TSPLIB (PCB3038 with p = 400 and RL5934 with p = 600),
and RW (RW1000 with p = 100). We conduct two sets of
experiments. First, we intend to test how the acceleration
strategy of ALC affects the number of returned backbone (fat)
variables. Tables I and II present the results of LC and ALC.

TABLE I
LC/ALC WITH UPPER BOUNDS PROVIDED BY BEST KNOWN SOLUTIONS

TABLE II
LC/ALC WITH UPPER BOUNDS PROVIDED BY LOCAL OPTIMA

In these tables, columns 1–3 specify the problem instances.
Columns 4–6 present the results of LC, including the nor-
malized size of the backbone (fat) obtained, as well as the
time elapsed in seconds. The results of ALC are presented in
columns 7–9. For all the results in Table I, the upper bound of
each instance is provided by the best known solution achieved
by the state-of-the-art algorithm (see Section V-D). In Table II,
the upper bound of each instance is provided with a local
optimum achieved by applying the interchange operator [47]
over a random initial solution. The following observation can
be found from Tables I and II.

On the one hand, comparing columns 4–6 with columns 7–9
in Tables I and II, respectively, we can find that ALC runs far
faster than LC at the cost of missing a part of the backbone (fat)
variables. For example, in Table I, 99.26% of the fat variables of
pmed40 are found by LC in 77.58 s, whereas 79.88% of the fat
variables can be returned by ALC in 0.63 s. The reason is that
ALC relaxes the tightness of the lower bounds, which makes it
less possible for the LC phenomenon to occur.

On the other hand, the upper bound also plays an important
role. The comparison of the results of LC and ALC in Table I
with those in Table II indicates that, with the upper bounds
changed from the costs of the best known solutions to those
of randomly sampled local optima, the number of the backbone
(fat) variables obtained by both LC and ALC drops dramati-
cally. With the upper bounds provided with local optima, e.g.,
for PCB3038 and RL5934, no backbone (fat) variable can be
identified. Another interesting observation can be drawn over
the RW instance. Over this instance, even with the best known
objective cost as the upper bound, no backbone (fat) can be
detected, which may imply that it is hard to extract structural
information from RW instances, which are randomly generated
(see [33] for the detailed description of RW instances).

Further insight can be gained by evaluating the influence of
gradually increased upper bounds. Fig. 1 shows the behaviors of
both LC and ALC with various upper bounds. The experiment
is conducted as follows. Over each instance, the upper bound
starts from the optimal cost and increases linearly; both LC
and ALC are performed with such an upper bound. In Fig. 1,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

Fig. 1. Upper bound influence over ORLIB instances. (a) pmed15. (b) pmed40.

the number of the backbone (fat) variables is plotted against
the upper bound. Due to the computation complexity, this
experiment is only conducted over ORLIB instances. Some
interesting phenomena can be concluded from Fig. 1. First, the
curves of both LC and ALC follow a similar tendency that
the number of the backbone (fat) variables obtained sharply
decreases along with the growth of the upper bound. Second,
LC can achieve more backbone (fat) variables than ALC when
the same upper bound is employed. This phenomenon coincides
with the conclusion drawn from Tables I and II that ALC may
miss part of the backbone (fat).

In summary, in this section, we propose LC and ALC in
search of the backbone and the fat variables. However, empir-
ical results demonstrate that the extraction of these variables
is difficult, which is sensitive to both the lower bound and
the upper bound. Thus, in the following section, we intend
to exploit the idea of LC to guide the search procedure and,
meanwhile, prevent the search from being sensitive to the lower
bound and the upper bound.

IV. ALCMA

In this section, we propose the new algorithm ALCMA.
The key idea of ALCMA is to employ ALC to achieve some
(pseudo) backbone (fat) variables and transform the search
space into a series of reduced ones so as to efficiently improve
the solutions. It should be noted that, since ALC is called in
ALCMA for multiple times and some steps in ALC need to be
executed only once, ALC is implicitly embedded in ALCMA.

As discussed in Section III, LR has to be performed at least
once in LC for each facility so as to identify the backbone (fat)
variables. The high complexity of LR makes LC impractical to
be incorporated into a heuristic algorithm for problem solving.
In contrast to LC, ALC can speed the procedure up, although
some backbone (fat) variables may be missed. Moreover,
ALC is still sensitive to the tightness of the upper bound. In
ALCMA, we intend to retain the fast characteristic of ALC and,
meanwhile, prevent the algorithm from being sensitive to the
upper bound. Therefore, a pseudo upper bound is introduced
and dynamically adjusted in ALCMA for returning a part of the
backbone (fat) variables in short time.

Given a lower bound LBΠ and an upper bound UBΠ,
there always exists a factor α∗ such that Copt(Π) = LBΠ +
α∗(UBΠ − LBΠ). Therefore, in ALC, every facility f ∈ I∗

satisfying β∗
f < β∗

kp+1
− α∗(UBΠ − LBΠ) can be identified

as a backbone variable, and facility f �∈ I∗ for which β∗
f >

β∗
kp

+ α∗(UBΠ − LBΠ) holds can be identified as a fat vari-
able. However, α∗ is instance dependent and cannot be ob-

tained in advance. As a tradeoff, with α∗ replaced with a
pseudo factor α, the pseudo upper bound in ALCMA is de-
fined as pseudo_UBΠ = LBΠ + α(UBΠ − LBΠ). Further-
more, we define the pseudo backbone (fat) as follows:

pseudo_bone(α)

=
{

f : β∗
f < β∗

kp+1
− α(UBΠ − LBΠ), f ∈ I∗

}
(13)

pseudo_fat(α)

=
{

f : β∗
f > β∗

kp
+ α(UBΠ − LBΠ), f �∈ I∗

}
. (14)

By replacing the backbone (fat) identification criteria in
Algorithm 4 with criteria (13) and (14), ALC can be easily
adjusted to detect the pseudo backbone (fat) variables. How-
ever, some nonbackbone (nonfat) variables may be falsely
detected as the backbone (fat) variables if the factor α is too
small (e.g., α 	 α∗). Meanwhile, some backbone (fat) vari-
ables cannot be included in pseudo_bone(α) (pseudo_fat(α))
if α > α∗. Since α∗ is usually unknown before the given p-
median instance is exactly solved, it is extremely hard to
set a static value for α. Therefore, we dynamically adjust
the value of α in ALCMA. At the beginning of ALCMA,
α is initialized with a very small positive value such that a
large scale of pseudo_bone(α) (pseudo_fat(α)) can be easily
determined. By fixing (trimming out) those pseudo backbone
(fat) variables, some high-quality solutions can be searched
in the reduced search space. Then, the upper bound can be
updated accordingly with the newly found solutions. Along
with the progress of ALCMA, the factor α gradually grows
until pseudo_bone(α) (pseudo_fat(α)) does not contain any
nonbackbone (nonfat) variable.

Now, we shall describe ALCMA in more detail. From
Algorithm 5, we can observe that ALCMA consists of two
phases. In the Initialization phase, the factor α is first initial-
ized with a sufficiently small value (line 3). In addition, the
pseudo backbone and the pseudo fat are set to be empty (line
4). Then, a solution is achieved by calling an existing heuristic
algorithm (line 5). For simplicity, we use the same heuristic M
that will be applied in the second phase. When the heuristic M
terminates, the returned solution J is recorded as the currently
best solution J ′, and its cost CJ (F,U,D, p) is taken as the
upper bound UBΠ (lines 6 and 7). As the final step of the
Initialization phase, we apply LR in Algorithm 2 to achieve
the data structures required in the following of the algorithm,
including LBΠ, t∗, λ∗, β∗, and I∗.

After the Initialization phase, the Multilevel Solving phase
is conducted, which is a while loop composed of a few itera-
tions. Within each iteration, the pseudo backbone (fat) variables

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: ALCMA FOR THE p-MEDIAN PROBLEM 7

are first determined by criteria (13) and (14) (line 13). Since
the entries of β∗ have been obtained from the Initialization
phase, every facility can be checked in only O(1) running time.
Note that if none of the pseudo backbone (fat) variables can
be detected, the while loop stops and the best solution J ′ is
returned, because at this time, the search space has degraded
into the original search space (lines 14 and 15). Otherwise,
these pseudo backbone (fat) variables are fixed (trimmed out)
from the p-median instance so as to derive a reduced search
space (line 16). Then, within the reduced search space, the
embedded heuristic algorithm M is invoked, with the best
solution J ′ as the initial solution (line 17). Since the search
space has been dramatically reduced, the search procedure of
the embedded heuristic algorithm can be conducted efficiently
and effectively. Once a better solution is achieved, both the
best solution J ′ and the upper bound UB(Π) are updated (lines
18–20). Finally, the factor α gets doubled (line 21). Obviously,
the pseudo upper bound will be greater than the upper bound
when α exceeds one. Therefore, the while loop repeats until
the value of α exceeds one.

In summary, in this section, we propose the ALCMA. By
combining ALC and the multilevel mechanism in a unified
framework, ALCMA might benefit from the effective reduction
of the search space provided by ALC and, meanwhile, avoid the
upper bound sensitivity. On the one hand, with the pseudo upper
bound, ALC is hopeful to significantly alter the search space
structure so as to improve the search efficiency. On the other
hand, with the help of the multilevel strategy, the upper bound
dependence of ALC is partially eliminated. Moreover, we shall
note that ALCMA is not restricted to certain algorithms. In
Algorithm 5, ALCMA does not make any assumption about the
embedded heuristic M , which, to some extent, demonstrates
the generality of the framework. In the following section,
extensive experiments will be conducted so as to evaluate the
performance of the framework.

TABLE III
RESULTS OF ALCMA WITH VARYING PARAMETER k

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, extensive experiments and analysis are
conducted. First, we describe the experiment environment
and some implementation issues in Section V-A. Then, in
Sections V-B and V-C, we conduct the preliminary parameter
tuning tasks. In Section V-D, we examine the performance of
our framework by comparing ALCMA with the state-of-the-
art algorithm PBS and other relevant algorithms. Furthermore,
to demonstrate the effectiveness of the framework with statisti-
cal evidence, in Section V-E, hypothesis tests are introduced
to compare ALCMA and the other algorithms. Finally, in
Section V-F, we investigate why ALCMA works through the
configuration landscape analysis.

A. Experiment Environment and Implementation Issues

All the experiments are performed on a Pentium-IV 3.2-GHz
PC with 4-GB memory running GNU/Linux with kernel 2.6.25.
The algorithms are implemented in C++, compiled using g++
4.30 with flag -O2. The running time is measured in seconds.

Theoretically, any existing heuristic algorithm for the p-
median problem can be incorporated into ALCMA. In this
paper, we embed VNS into ALCMA, which combines local
search with systematic changes of the neighborhood. In this
paper, we adopt the same version of VNS as the one proposed in
[15], except for the stopping criterion. In our approach, the stop-
ping criterion is changed to terminating VNS if no improvement
can be achieved within k iterations of the interchange operator,
where k is a parameter [for the rest of this paper, this variant
version of VNS is denoted as VNS(k)]. The reason that we
change the stopping criterion is that, within ALCMA, VNS(k)
converges much faster than VNS.

From the implementation perspective, there are two local
search operators used in the experiments, i.e., the interchange
operator and the 2-opt operator. For the interchange operator
in VNS(k) and HC, there are two widely used implementa-
tions with the same time complexity, as proposed in [48] and
[34], respectively. However, with a time–space tradeoff, the
implementation in [34] significantly accelerates the local search
procedure. Therefore, in this paper, the implementation in [34]
is employed. Meanwhile, for the 2-opt operator in HC, we
implement a variant based on the same tradeoff [34].

B. Parameter Tuning

Before the numerical results and other discussions are pre-
sented, we first conduct some preliminary experiments for tun-
ing the value of the parameter k within VNS(k). The value of k

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

Fig. 2. Anytime performance of ALCMA with different factor adjustment strategies. (a) PCB3038 (p = 400). (b) RL5934 (p = 600). (c) RW1000 (p = 100).

is selected from {10, 20, 50, 100, 200, 500}. As the benchmark
instances, we choose PCB3038 with p = 400, RL5934 with
p = 600 from TSPLIB, and RW1000 with p = 100 from RW.
We do not employ the ORLIB instances because they are too
easy to tell differences among various parameter setups. The
%err columns in the tables of this paper are defined according
to the method in [15] as follows, where Copt indicates the
optimal cost or the best known upper bound (which can be
found in Section V-D) and C represents the cost of the current
solution:

%err =
C − Copt

Copt
× 100. (15)

From Table III, ALCMA is not very sensitive to the parame-
ter k as long as the value of k is not too small. On the other
hand, the running time will increase accordingly as k grows.
Thus, in this paper, the value of k is set to 100.

C. Sensitivity Analysis of Factor Adjustment Strategy

In ALCMA, the factor α is exponentially adjusted in the
Multilevel Solving phase. A straightforward extension is to
introduce other factor adjustment strategies, such as linear and
logarithmic. In this section, some experiments are carried out to
analyze the sensitivity of ALCMA to different factor adjusting
strategies. The selected benchmark instances are the same
as those in Section V-B, including PCB3038 with p = 400,
RL5934 with p = 600, and RW1000 with p = 100.

Fig. 2 shows the anytime performance of ALCMA with
different factor adjustment strategies. In every strategy, α is
initialized with a sufficiently small positive value (1.00 × 10−8

in this study). For the exponential strategy, α gets doubled at
each iteration, i.e., ALCMA runs at most �log2 108� + 1 = 27
times of the embedded VNS(k). For comparison, the value of α
in the other two strategies is updated such that ALCMA runs at
most 27 times of VNS(k), i.e., α = α + (1 − 10−8)/27 in the
linear strategy and α = 10−8 + (1 − 10−8) × log2 t/ log2 27 in
the logarithmic strategy. Fig. 2 implies that both the linear
strategy and the logarithmic strategy may suffer from early
convergence. Over all the three instances, ALCMA with ei-
ther the linear strategy or the logarithmic strategy exits the
Multilevel Solving phase after only a few runs of VNS(k)
since no backbone (fat) variable can be returned. In contrast,
the exponential strategy is more robust and performs well over
all the four instances. Furthermore, we compare ALCMA with
the multistart version of VNS(k) (denoted as multiVNS). In
multiVNS, VNS(k) is totally executed for 27 times, and the

initial solution of each run of VNS(k) is provided by the best
solution achieved up to the previous run. It can be observed
from Fig. 2(a) and (b) that, over the TSPLIB instances, AL-
CMA with the exponential strategy outperforms multiVNS in
terms of solution quality. Furthermore, note that, over PCB3038
with p = 400 and RL5934 with p = 600, all the three variants
of ALCMA can obtain better solutions than multiVNS within
the first several runs of VNS(k). This observation over these
instances partially confirms the prediction in Section IV that,
with a small upper bound factor, ALCMA can restrict the search
process in a small region of the search space that contains
high-quality solutions. However, an exception can be observed
in Fig. 2(c). Over RW1000 with p = 100, the solution quality
of ALCMA is similar with that obtained by multiVNS within
the first several runs of VNS(k), which conforms with the
observation in Section III-C.

D. Numerical Results

In order to evaluate the performance of ALCMA, we con-
duct the experiments over three broad classes of benchmark
instances: 1) graph-based instances, including 40 instances
from ORLIB, 3 instances from SL, and 16 instances from GR;
2) random instances, which consist of 28 instances from RW;
and 3) Euclidean instances, which consist of 84 instances from
TSPLIB. All the details about these benchmark instances can
be found in [30]. For comparison, the experimental results of
three other algorithms are also presented, including multiVNS,
HC, and PBS [30]. For HC, the Gamma version [38] is chosen.

For the parameter configurations, the value of k in ALCMA
and multiVNS is set to 100. The parameters of HC are set
with the same values as in [38]. The numerical results are
measured in the same way as other existing approaches [15],
[30], [33], i.e., over each instance, every algorithm is indepen-
dently performed for nine independent times. In the tables, the
best column indicates the best cost obtained among the nine
runs. The MED column presents the median cost over the nine
runs. The %err column is calculated using (15), in which C
represents the average cost in this case. Finally, the time column
shows the average time elapsed for each algorithm.

Before comparing the results of the algorithms, there are
several points that are worth noting.

1) Due to the computational reason, two exceptions are as
follows. The first is about the RL11849 instances. Be-
cause of the extremely large number of facilities (as there
are 11 849 facilities for each instance), we only perform
ALCMA once and compare the results with PBS. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: ALCMA FOR THE p-MEDIAN PROBLEM 9

TABLE IV
NUMERICAL RESULTS FOR FL1400 INSTANCES

TABLE V
NUMERICAL RESULTS FOR PCB3038 INSTANCES

other exception is about HC. Due to the high complexity
of the 2-opt operator in HC, numerical results of HC
for PCB3038, RL5934, and RL11849 instances are not
presented.

2) Since both ALCMA and PBS can always achieve the
optimality over all the ORLIB, SL, and GR instances,
the experimental results over these instances are not
presented. The experimental results over the RW and
TSPLIB instances are shown in Tables IV–VIII.

3) It is not straightforward to compare the running time of
the algorithms, particularly for PBS. First, PBS is a dis-
tributed algorithm, tested in a much higher performance

environment than in this study.2 Second, in [30], over
each instance, the author only reports the time that PBS
achieves the best solution, which makes it not appropriate
for direct comparison. As a result, we only report the
average time obtained on ten CPUs in [30] and do not
conduct the scaling task. However, we can observe that,
over instances with a large number of medians (e.g.,

2PBS is tested on a Linux cluster with up to 30 CPUs that, when execut-
ing the DIMACS Machine Benchmark (dmclique, ftp://dimacs.rutgers.edu in
/pub/dsj/clique) on one CPU, requires 0.31 s for r300.5, 1.93 s for r400.5, and
7.35 s for r500.5. In our environment, the three values are 0.46, 2.85, and 10.79.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

TABLE VI
NUMERICAL RESULTS FOR RL5934 INSTANCES

TABLE VII
NUMERICAL RESULTS FOR RL11849 INSTANCES

PCB3038 with p ≥ 300 and RL5934 with p ≥ 500), the
time for PBS to achieve the best solutions is longer than
that for ALCMA to terminate. Moreover, as for HC and
multiVNS, we can observe that, over many instances
(53 out of 105 for HC and 120 out of 161 for multiVNS),
their running time is longer than that of ALCMA. For
those instances over which ALCMA is slower, the time is
in the same order of magnitude with HC and multiVNS.
These, to some extent, validate the solution quality com-
parison between these algorithms and ALCMA.

Now, we shall discuss the computational results. Over
TSPLIB instances with a small number of medians (e.g.,
PCB3038 and RL5934 with p < 100), ALCMA is able to
achieve solutions as good as PBS. When the number of medians
grows larger (PCB3038 and RL5934 with p ≥ 100), ALCMA
usually obtains better solutions than PBS. Over all the 84
TSPLIB instances, ALCMA totally achieves 52 new best solu-
tions and 13 currently best known solutions. For the TSPLIB
instances over which ALCMA cannot achieve currently best
known solutions, the average percentage errors are always less
than 0.1%. It should be noted that the performance of ALCMA
over RW instances is not so satisfying. The reason may be that

these instances are randomly generated [34]; thus, the under-
lying structural information of these instances is hard to be
extracted. With few backbone (fat) variables obtained, ALCMA
will then degrade into multiVNS. In summary, over the total
171 benchmark instances, ALCMA is able to achieve 52 new
best solutions and locate 92 of the currently best known/optimal
solutions.

E. Statistical Tests

In this section, statistical tests are introduced to compare
the average results of ALCMA and the other algorithms and
draw confident conclusions whether one algorithm outperforms
another. Following [12], in this section, we consider the average
error rates (i.e., %err defined in (15), with respect to the
nine independent runs of each algorithm). More specifically,
we first employ Friedman’s test to detect the potential dif-
ferences in performance among algorithms. Then, the two-
sided Wilcoxon’s signed rank tests are conducted between
ALCMA and other algorithms so as to analyze both the strength
and the weakness of the framework. In this section, we con-
sider the 95% confidence level (i.e., the p − values below
0.05 are considered significant) for both Friedman’s test and
Wilcoxon’s test.

As required by the statistical tests, we first specify the test
instances. Due to the reason that HC is not applicable to all
the instances, we divide the instance set into two subsets.
More detailed, Subset 1 consists of the ORLIB, GR, SL, RW,
and FL1400 instances, which have relatively small number of
facilities. Subset 2 comprises the PCB3038 and RL5934 in-
stances, which have larger number of facilities. Accordingly, we

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: ALCMA FOR THE p-MEDIAN PROBLEM 11

TABLE VIII
NUMERICAL RESULTS FOR RW INSTANCES

Fig. 3. Comparisons between ALCMA and other algorithms. (a) Average ranking of algorithms. (b) ALCMA versus PBS. (c) ALCMA versus multiVNS.
(d) ALCMA versus HC.

compare the performance of the algorithms in three scenarios.
In Scenario 1, we compare ALCMA with PBS, multiVNS, and
HC over the instances from Subset 1, since HC is only tested
over these instances. Then, in Scenario 2, we compare ALCMA
with PBS and multiVNS over the instances from Subset 2.

Finally, in Scenario 3, we compare ALCMA with PBS and
multiVNS over all the instances.

In Fig. 3(a), we present the average ranking with respect to
Friedman’s test [12]. In the subfigure, each column represents
the ranking of the corresponding algorithm, and lower columns

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

TABLE IX
RESULTS OF WILCOXON’S TESTS

indicate better performance. From Fig. 3(a), we can observe
that, in Scenario 1, PBS obtains better ranking than ALCMA,
while in both Scenarios 2 and 3, ALCMA obtains the best
ranking. In all the scenarios, Friedman’s test detects significant
differences in performance among the algorithms (with p −
values = 4.69 × 10−11, 4.73 × 10−11, and 5.19 × 10−11 for
the three scenarios). However, since ALCMA does not always
achieve the best ranking, we proceed to compare ALCMA with
other algorithms in a pairwise paradigm so as to analyze both
the strength and the weakness of ALCMA.

To gain a more intuitive impression about the pairwise com-
parisons, in Fig. 3(b)–(d), we present the relative comparison
between algorithms in both Scenarios 1 and 2. For example,
Fig. 3(b) shows the comparison between ALCMA and PBS.
In the subfigure, the x-axis and the y-axis indicate the (log
scale) %err of ALCMA and PBS, respectively. More specif-
ically, each point (x, y) in the subfigure indicates that there
are one or more instances over which ALCMA’s %err and
PBS’s %err are x and y, respectively. Since the instance set
is separated into two subsets (with respect to Scenarios 1 and
2), these instances are represented by different point types. For
clarity, we plot the reference line y = x. Consequently, a point
above the line implies that, over the corresponding instance(s),
ALCMA outperforms PBS, since ALCMA obtains smaller
%err. Companion with Fig. 3(b)–(d), the results of Wilcoxon’s
tests are presented in Table IX, which are organized as follows.
The first column indicates the three scenarios, as described
earlier. Then, in columns 2–4, the results of Wilcoxon’s tests
are reported in each scenario. The comparison results consist of
the p − value as well as the name of the algorithm that achieves
the better performance.

From Fig. 3(b)–(d) and Table IX, several interesting phenom-
ena can be observed.

1) The result of the comparison between ALCMA and PBS
is scenario dependent. In Scenario 1, there exist more
points that lie below the reference line, which implies
that PBS outperforms ALCMA in this scenario. This ob-
servation is confirmed by Wilcoxon’s test (p − value =
0.004). We attribute this observation to the fact that,
in Scenario 1, the graph-based (ORLIB, GR, and SL)
instances are relatively easy, which cannot tell differences
between ALCMA and PBS, while the RW instances are
randomly generated, from which the structural informa-
tion such as backbone and fat is hard to be extracted.
Contrarily, in Scenario 2, ALCMA significantly outper-
forms PBS (p − value = 5.72 × 10−10). This observa-
tion demonstrates that our framework is very effective in
solving those instances with a large number of facilities.

2) In Fig. 3(c), the majority of the points lie above the
reference line, which reveals that ALCMA outperforms
multiVNS (p − value < 1.00 × 10−8 in Scenarios 1

and 2). Since both ALCMA and multiVNS employ the
same embedded heuristic (VNS(k) in this study), this ob-
servation demonstrates the effectiveness of the proposed
framework.

3) Similar to 2), ALCMA statistically outperforms HC
(p − value=7.35 × 10−11), which is shown in Fig. 3(d).

4) Finally, in Scenario 3, when we compare ALCMA
with PBS and multiVNS over the whole instance set
(recall that, since HC is not tested over all the in-
stances, ALCMA is not compared with HC in this
scenario), Wilcoxon’s tests indicate that ALCMA out-
performs both PBS (p − value = 0.025) and multiVNS
(p − value < 2.20 × 10−16). Considering the family-
wise error rate [12], we can deduce that ALCMA per-
forms the best among ALCMA, PBS, and multiVNS with
a p − value less than 1 − (1 − 0.025) × (1 − 2.20 ×
10−16) < 0.026.

As a brief summary, in this section, statistical tests are intro-
duced to evaluate the effectiveness of the framework. Through
various comparisons, we demonstrate that ALCMA is able
to obtain competitive results, particularly over those instances
with a large number of facilities. However, if the instances
are unstructured, ALCMA does not have much advantage over
the state-of-the-art algorithm. Furthermore, considering all the
instances, the overall performance of ALCMA is better than
that of the other algorithms (PBS and multiVNS).

F. Configuration Landscape Analysis

In this section, the configuration landscape analysis is con-
ducted over typical ORLIB instances (pmed15 and pmed40)
and TSPLIB instances (PCB3038 with p = 400 and RL5934
with p = 600) to investigate the underlying reasons why AL-
CMA works over these instances. We demonstrate that ALC
is able to effectively alter the structure of the search space,
and several design strategies in ALCMA are necessary, such
as the dynamic maintenance of the pseudo upper bound and
the exponential adjustment of α. As a comparison, we carry
out the landscape analysis over an RW instance (RW1000 with
p = 100) so as to explain why ALCMA performs poorly over
RW instances. In addition, we also present the configuration
landscape analysis for the HC-S1 reduction within HC so as
to investigate why ALCMA outperforms HC and its variants
[36]–[39].

In general, the fitness landscape analysis [45] is used either
to understand the mechanism of algorithms [4], [46] or to
evaluate the performance of algorithms [9], [26]. In addition,
some researchers employ the fitness landscape to design new
algorithms [22], [31]. As a special fitness landscape, the config-
uration landscape is developed by Zhang [51] for Max SAT to
investigate the characteristics of search spaces. To explain why

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: ALCMA FOR THE p-MEDIAN PROBLEM 13

Fig. 4. Configuration landscapes generated by the interchange operator with/without the ALC reduction over ORLIB instances. (a) pmed15 (without ALC).
(b) pmed15 (α = 0.001). (c) pmed15 (α = 0.01). (d) pmed15 (α = 0.5). (e) pmed40 (without ALC). (f) pmed40 (α = 0.001). (g) pmed40 (α = 0.01).
(h) pmed40 (α = 0.5).

the ALC reduction works, we empirically compare the config-
uration landscapes generated by the interchange operator under
two conditions. In the first case, the configuration landscape
over the original search space is generated with 10 000 local
optima, each of which is randomly initialized and improved by
the interchange operator. In the second case, over the reduced
search space derived by ALC, its configuration landscape is
generated as follows. First, we follow the Initialization phase
of ALCMA to generate an upper bound with the interchange
operator and then employ the procedure of LR to achieve the
lower bound LBΠ. With the t∗, λ∗, β∗, and I∗ returned from
LR in computing LBΠ, we can achieve the pseudo backbone
(fat) with the specified values of α (α = 0.001, 0.01, 0.5 in this
study) with respect to criteria (13) and (14). Then, the search
space can be reduced by fixing (trimming out) the pseudo back-
bone (fat). Within the reduced search space, 10 000 local optima
are produced. Each local optimum is achieved by employing
the interchange operator to improve a random initial solution,
which includes two parts, i.e., the pseudo backbone and p − γ
facilities randomly chosen from all the facilities except the
pseudo backbone and the pseudo fat, where γ denotes the
number of facilities in the pseudo backbone.

In the generation method, the reasons we choose the in-
terchange operator rather than VNS(k) are as follow. From
the computational complexity perspective, VNS(k) is much
more time consuming than the interchange operator, which
makes it impractical to generate 10 000 local optima using
VNS(k). Meanwhile, since the interchange operator is the key
component of VNS(k), the distribution of local optima by the
interchange operator can, to some extent, reflect the behavior of
VNS(k). For example, in [15], the fitness landscapes generated
by sampling 10 000 local optima of the interchange operator
are employed to capture the properties of VNS.

Given the 10 000 local optima described earlier and a
reference solution (provided by the best known solution; see
Section IV-D), we can plot the configuration landscape for
every instance. In the landscape, the three dimensions repre-
sent the Hamming distance and the cost difference from the

reference solution, as well as the number of the local optima
that are clustered together. The Hamming distance and the cost
difference are defined as follows [15]:

δH(J, J∗) = |J\J∗| (16)

δC(J, J∗) = CJ(F,U,D, p) − CJ∗(F,U,D, p) (17)

where J denotes a local optimum and J∗ denotes the reference
solution. A point (x, y, z) in the configuration landscape indi-
cates that, among all the sampled local optima, z local optima
are clustered together with the same Hamming distance x and
the same cost difference y from the solution J∗.

The configuration landscapes of typical ORLIB instances
over the original search spaces, and the reduced search spaces
derived by ALC with α = 0.001, 0.01, 0.5, are shown in Fig. 4.
As shown in Fig. 4, the following observations of ALC can be
achieved.

First, with an appropriate value of α, ALC is able to sub-
stantially alter the search space structure of these instances
and restrict the search over a very small region of the search
space that contains high-quality solutions. For example, over
the instance pmed15, after the ALC reduction with α = 0.001
[see Fig. 4(b)], most of the Hamming distances between the
sampled local optima and the reference solution lie within
[0, (p/5)], and the cost differences lie within [0, 20]. While
over the original search space of pmed15 [see Fig. 4(a)], the
Hamming distances are within the interval [0, (2p/5)], and the
cost differences are within the interval [0, 50].

Second, over these instances, the distribution of the local
optima over the reduced search space exhibits a consistent trend
as α grows. For example, over pmed40, after the ALC reduction
with α ≤ 0.01 [see Fig. 4(f) and (g)], the cost differences
between the sampled local optima and the reference solution
are always less than 30. As α grows to 0.5 [see Fig. 4(h)],
the maximum cost difference also increases to 79, and the
configuration landscape is almost the same as that over the
original search space [see Fig. 4(e)]. This observation confirms
the prediction in Section IV that, with α increasing from a very

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

Fig. 5. Configuration landscapes generated by the interchange operator with/without the ALC reduction over TSPLIB instances. (a) PCB3038 (p = 400 and
without ALC). (b) PCB3038 (p = 400 and α = 0.001). (c) PCB3038 (p = 400 and α = 0.01). (d) PCB3038 (p = 400 and α = 0.5). (e) RL5934 (p = 600
and without ALC). (f) RL5934 (p = 600 and α = 0.001). (g) RL5934 (p = 600 and α = 0.01). (h) RL5934 (p = 600 and α = 0.5).

Fig. 6. Configuration landscapes generated by the interchange operator with/without the ALC reduction over an RW instance. (a) RW1000 (p = 100 and without
ALC). (b) RW1000 (p = 100 and α = 0.001). (c) RW1000 (p = 100 and α = 0.01). (d) RW1000 (p = 100 and α = 0.5).

small positive value to one, the reduced search space gradually
grows from a highly restricted subspace toward the original
search space. On the other hand, with the same value of α, the
comparison between the configuration landscapes over different
instances implies that ALC is instance dependent. For example,
as α increases from 0.001 to 0.01, the configuration landscape
over pmed40 [see Fig. 4(f) and (g)] changes more drastically
than that over pmed15 [see Fig. 4(b) and (c)]. This also explains
why we dynamically adjust the value of α.

In order to examine whether the aforementioned phenomena
hold for other classes of instances, we proceed to conduct the
configuration landscape analysis over typical TSPLIB and RW
instances. The generation method is the same as those over
the ORLIB instances. From Fig. 5, similar observations can be
drawn over the TSPLIB instances, i.e., ALC with the appropri-
ate value of α is able to effectively restrict the search within a
promising region of the search space, and α is instance depen-
dent. However, from Fig. 6, it is obvious that, over RW1000
with p = 100, ALC fails to alter the search space structure
significantly, even with α = 0.001. This observation partially
explains the reason for the poor performance of ALCMA over
RW instances.

In the remaining part of this section, we intend to investigate
the reason why ALCMA outperforms HC, by analyzing the
configuration landscapes with/without the HC-S1 reduction.
We first produce the configuration landscape over the original
search space by sampling 10 000 local optima, each of which

is randomly initialized and improved by the 2-opt operator.
For comparison, we also achieve 10 000 local optima within
the reduced search space derived by the HC-S1 reduction as
follows. First, we follow the work in [38] to generate 15 local
optima using the interchange operator. Hereafter, for clarity, let
InS and UnS be the intersection and the union of these 15
solutions, respectively. Then, the concentration set is formed
with UnS. Within this concentration set, a reduced search space
can be derived, and 10 000 local optima are produced. Each
local optimum is achieved by applying the 2-opt operator to
a random initial solution composed of two parts, i.e., InS
and p − γ facilities randomly chosen from UnS\InS, where
γ = |InS|. Due to the computational complexity of the 2-opt
operator, the configuration landscapes with/without the HC-
S1 reduction are only generated over typical ORLIB instances.
In this experiment, the configuration landscapes are generated
by sampling local optima of the 2-opt operator, rather than
that of the interchange operator. The reason is that, in HC,
the interchange operator and the 2-opt operator are applied
during the HC-S1 reduction stage and the HC-S2 solving stage,
respectively. Meanwhile, in [38], it is claimed that the heuristics
used during the HC-S1 stage and the HC-S2 stage should not be
the same [38].

The configuration landscapes generated by the 2-opt operator
are shown in Fig. 7. As shown in Fig. 7, the HC-S1 reduction
fails to alter the structure of the search space. Over each
instance in this experiment, the configuration landscape of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REN et al.: ALCMA FOR THE p-MEDIAN PROBLEM 15

Fig. 7. Configuration landscapes generated by the 2-opt operator with/without the HC-S1 reduction over ORLIB instances. (a) pmed15 (without HC-S1).
(b) pmed15 (with HC-S1). (c) pmed40 (without HC-S1). (d) pmed40 (with HC-S1).

original search space is almost the same as that of the reduced
search space. As a result, the performance of HC mainly
benefits from the shrinking of the search space.

VI. CONCLUSION

The main contributions of this paper can be summarized into
the following aspects. First, in this paper, we propose an LC
framework searching for the backbone (fat) variables. Based on
the LC framework, a novel algorithm ALCMA is proposed, and
numerical results over the benchmark instances indicate that
our algorithm can achieve very competitive solutions. Over the
benchmark instances, several new best solutions are achieved.
Finally, the configuration landscape analysis is introduced to
investigate the underlying reasons why ALCMA works. For fu-
ture research, we plan to investigate several potential directions.
As a straightforward extension of our work, we are interested
in incorporating some other existing heuristic algorithms into
ALCMA, e.g., TS [35], ACO [23], and SA [28]. In addition,
there exist various studies following VNS, such as decompo-
sition [14] and parallelization [11]. It will be interesting to
test whether these ideas can be incorporated into the ALCMA
framework. Second, since both LC and ALC are sensitive to the
upper (lower) bound, it could be an important direction in the
future work on how to obtain tight bounds, so that more exact
backbone (fat) variables can be identified. As a long-term plan,
we intend to investigate how to employ ALCMA to solve more
optimization problems.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their insightful comments and suggestions.

REFERENCES

[1] J. E. Beasley, “A note on solving large p-median problems,” Eur. J. Oper.
Res., vol. 21, no. 2, pp. 270–273, Aug. 1985.

[2] K. D. Boese, “Cost versus distance in the traveling salesman problem,”
Univ. California, Los Angeles, CA, Tech. Rep. CSD-950018, 1995.

[3] I. T. Christou, “Coordination of cluster ensembles via exact methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 2, pp. 279–293,
Feb. 2011.

[4] S. Choi and B. Moon, “Normalization for genetic algorithms with non-
synonymously redundant encodings,” IEEE Trans. Evol. Comput., vol. 12,
no. 5, pp. 604–616, Oct. 2008.

[5] S. Climer and W. Zhang, “Searching for backbone and fat: A limit-
crossing approach with applications,” in Proc. 18th Assoc. Adv. Artif.
Intell., 2002, pp. 707–712.

[6] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, “Location of bank
accounts to optimize float: An analytic study of exact and approximate
algorithms,” Manage. Sci., vol. 23, no. 8, pp. 789–810, Apr. 1977.

[7] W. Cook and P. Seymour, “Tour merging via branch-decomposition,” Inf.
J. Comput., vol. 15, no. 3, pp. 233–248, Jul. 2003.

[8] M. Daskin and L. Dean, “Location of health care facilities,” Oper. Res.
Health Care, vol. 70, pp. 43–76, 2005.

[9] M. Gallagher and B. Yuan, “A general-purpose tunable landscape genera-
tor,” IEEE Trans. Evol. Comput., vol. 10, no. 5, pp. 590–603, Oct. 2006.

[10] F. Garcıacute;a-López, B. Melián-Batista, J. A. Moreno-Pérez, and
J. M. Moreno-Vega, “Parallelization of the scatter search for the p-median
problem,” Parallel Comput., vol. 29, no. 5, pp. 575–589, 2003.

[11] F. Garcıacute;a-López, B. Melián-Batista, J. Moreno-Pérez, and
J. Moreno-Vega, “The parallel variable neighborhood search for the
p-median problem,” J. Heurist., vol. 8, no. 3, pp. 375–388, May 2002.

[12] S. Garcıacute;a, D. Molina, M. Lozano, and F. Herrera, “A study on the
use of non-parametric tests for analyzing the evolutionary algorithms’ be-
haviour: A case study on the CEC’2005 special session on real parameter
optimization,” J. Heurist., vol. 15, no. 6, pp. 617–644, Dec. 2009.

[13] L. Greco, M. Gaeta, and B. Piccoli, “Sensor deployment for network-
like environments,” IEEE Trans. Autom. Control, vol. 55, no. 11,
pp. 2580–2585, Nov. 2010.

[14] P. Hansen, N. Mladenovi, and D. Perez-Britos, “Variable neighborhood
decomposition search,” J. Heurist., vol. 7, no. 4, pp. 335–350, Jul. 2001.

[15] P. Hansen and N. Mladenovi, “Variable neighborhood search for the
p-median,” Loc. Sci., vol. 5, no. 4, pp. 207–226, Dec. 1997.

[16] H. Hoos and T. Stützle, Stochastic Local Search: Foundations and Appli-
cations. San Mateo, CA: Morgan Kaufmann, 2005, pp. 158–171.

[17] C. M. Hosage and M. F. Goodchild, “Discrete space location-
allocation solutions from genetic algorithms,” Ann. Oper. Res., vol. 6,
no. 2, pp. 35–46, Feb. 1986.

[18] O. Kariv and S. Hakimi, “An algorithmic approach to network location
problems. II: The p-medians,” SIAM J. Appl. Math., vol. 37, no. 3,
pp. 539–560, Dec. 1979.

[19] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal placement of repli-
cas in trees with read, write, and storage costs,” IEEE Trans. Parallel
Distrib. Syst., vol. 12, no. 6, pp. 628–637, Jun. 2001.

[20] P. Kilby, J. Slaney, S. Thiébaux, and T. Walsh, “Backbones and
backdoors in satisfiability,” in Proc. 20th Nat. Conf. Artif. Intell., 2005,
pp. 1368–1373.

[21] P. Kilby, J. Slaney, and T. Walsh, “The backbone of the travelling sales-
person,” in Proc. 19th Int. Joint Conf. Artif. Intell., 2005, pp. 175–180.

[22] J. Knowles, “ParEGO: A hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems,”
IEEE Trans. Evol. Comput., vol. 10, no. 1, pp. 50–66, Feb. 2005.

[23] Y. Kochetov, T. Levanova, E. Alekseeva, and M. Loresh, “Large neigh-
borhood local search for the p-median problem,” Yugosl. J. Oper. Res.,
vol. 15, no. 1, pp. 53–63, 2005.

[24] A. Linhares, “Synthesizing a predatory search strategy for VLSI layouts,”
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 147–152, Jul. 1999.

[25] H. Jiang, X. Zhang, G. Chen, and M. Li, “Backbone analysis and algo-
rithm design for the quadratic assignment problem,” Sci. China Ser. F,
Inf. Sci., vol. 51, no. 5, pp. 476–488, May 2008.

[26] P. Merz and B. Freisleben, “Fitness landscape analysis and memetic algo-
rithms for the quadratic assignment problem,” IEEE Trans. Evol. Comput.,
vol. 4, no. 4, pp. 337–352, Nov. 2000.

[27] N. Mladenovi, J. Brimberg, P. Hansen, and J. A. Moreno-Prez, “The p-
median problem: A survey of metaheuristic approaches,” Eur. J. Oper.
Res., vol. 179, no. 3, pp. 927–939, Jun. 2007.

[28] A. Murray and R. Church, “Applying simulated annealing to location-
planning models,” J. Heurist., vol. 2, no. 1, pp. 31–53, 1996.

[29] A. Parkes, “Clustering at the phase transition,” in Proc. Nat. Conf. Artif.
Intell., 1997, pp. 340–346.

[30] W. Pullan, “A population based hybrid metaheuristic for the p-median
problem,” in Proc. IEEE World Congr. Comput. Intell., 2008, pp. 75–82.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

[31] M. Qasem and A. Prügel-Bennett, “Learning the large-scale structure of
the MAX-SAT landscape using populations,” IEEE Trans. Evol. Comput.,
vol. 14, no. 4, pp. 518–529, Aug. 2010.

[32] J. Reese, “Solution methods for the p-median problem: An annotated
bibliography,” Networks, vol. 48, no. 3, pp. 125–142, Oct. 2006.

[33] M. Resende and R. Werneck, “A hybrid heuristic for the p-median prob-
lem,” J. Heurist., vol. 10, no. 1, pp. 59–88, 2004.

[34] M. Resende and R. Werneck, “On the implementation of a swap-based
local search procedure for the p-median problem,” in Proc. 5th workshop
Algor. Eng. Exp., 2003, pp. 119–128.

[35] E. Rolland, D. A. Schilling, and J. R. Current, “An efficient Tabu search
procedure for the p-median problem,” Eur. J. Oper. Res., vol. 96, no. 2,
pp. 329–342, Jan. 1997.

[36] K. E. Rosing and C. S. ReVelle, “Heuristic concentration: Two stage
solution construction,” Eur. J. Oper. Res., vol. 97, no. 1, pp. 75–86,
Feb. 1997.

[37] K. E. Rosing, “Heuristic concentration and Tabu search: A head to head
comparison,” Eur. J. Oper. Res., vol. 104, no. 1, pp. 93–99, Jan. 1998.

[38] K. E. Rosing, C. S. ReVelle, and D. A. Schilling, “A gamma heuristic for
the p-median problem,” Eur. J. Oper. Res., vol. 117, no. 3, pp. 522–532,
Sep. 1999.

[39] K. E. Rosing and M. J. Hodgson, “Heuristic concentration for the p-
median: An example demonstrating how and why it works,” Comput.
Oper. Res., vol. 29, no. 10, pp. 1317–1330, Sep. 2002.

[40] M. Ruffolo, M. S. Daskin, A. V. Sahakian, and R. A. Berry, “Design of
a large network for radiological image data,” IEEE Trans. Inf. Technol.
Biomed., vol. 11, no. 1, pp. 25–39, Jan. 2007.

[41] A. B. Stephens, Y. Yesha, and K. E. Humenik, “Optimal allocation for
partially replicated database systems on ring networks,” IEEE Trans.
Knowl. Data Eng., vol. 6, no. 6, pp. 975–982, Dec. 1994.

[42] J. Schneider, C. Froschhammer, I. Morgenstern, T. Husslein, and J. Singer,
“Searching for backbones—An efficient parallel algorithm for the trav-
eling salesman problem,” Comput. Phys. Commun., vol. 96, no. 2/3,
pp. 173–188, Aug. 1996.

[43] J. Schneider, “Searching for backbones—A high-performance paral-
lel algorithm for solving combinatorial optimization problems,” Future
Gener. Comput. Syst., vol. 19, no. 1, pp. 121–131, Jan. 2003.

[44] E. Senne and L. Lorena, “Lagrangean/surrogate heuristics for p-median
problems,” in Proc. Comput. Tools Model., Optim. Simul., Interf. Comput.
Sci. Oper. Res., 2000, pp. 115–130.

[45] P. Stadler, “Landscapes and their correlation functions,” J. Math. Chem.,
vol. 20, no. 1, pp. 1–45, Mar. 1996.

[46] J. Tavares, F. B. Pereia, and E. Costa, “Multidimensional knapsack prob-
lem: A fitness landscape analysis,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 38, no. 3, pp. 604–616, Jun. 2008.

[47] M. B. Teitz and P. Bart, “Heuristic methods for estimating the gen-
eralized vertex median of a weighted graph,” Oper. Res., vol. 16, no. 5,
pp. 955–961, 1968.

[48] R. Whitaker, “A fast algorithm for the greedy interchange for large-
scale clustering and median location problems,” INFOR, vol. 21, no. 2,
pp. 95–108, 1983.

[49] T. Ye, H. T. Kaur, and S. Kalyanaraman, “Large-scale network parameter
configuration using an on-line simulation framework,” IEEE/ACM Trans.
Netw., vol. 16, no. 4, pp. 777–790, Aug. 2008.

[50] B. Yuan, M. Orlowska, and S. Sadiq, “On the optimal robot routing
problem in wireless sensor networks,” IEEE Trans. Knowl. Data Eng.,
vol. 19, no. 9, pp. 1252–1261, Sep. 2007.

[51] W. Zhang, “Configuration landscape analysis and backbone guided local
search: Part I: Satisfiability and maximum satisfiability,” Artif. Intell.,
vol. 158, no. 1, pp. 1–26, Sep. 2004.

[52] W. Zhang and M. Looks, “A novel local search algorithm for the traveling
salesman problem that exploits backbones,” in Proc. 19th Int. Joint Conf.
Artif. Intell., 2005, pp. 343–348.

Zhilei Ren received the B.Sc. degree in software
engineering from Dalian University of Technology,
Dalian, China, in 2007. He is currently working
toward the Ph.D. degree at Dalian University of
Technology.

His research interests include metaheuristic algo-
rithm design and data mining.

Mr. Ren is a student member of the China Com-
puter Federation.

He Jiang (M’10) received the B.Sc. and Ph.D. de-
grees in computer science from the University of
Science and Technology of China, Hefei, China, in
1999 and 2005, respectively.

He is currently an Associate Professor with the
School of Software, Dalian University of Technol-
ogy, Dalian, China. His research interests include
computational intelligence and its applications.

Dr. Jiang is a member of the China Computer
Federation.

Jifeng Xuan received the B.Sc. degree in software
engineering from Dalian University of Technology,
Dalian, China, in 2007. He is currently working
toward the Ph.D. degree at Dalian University of
Technology.

His research interests include search-based soft-
ware engineering, mining software repositories, and
machine learning.

Mr. Xuan is a student member of the China Com-
puter Federation.

Zhongxuan Luo received the B.Sc. and M.Sc.
degrees in computational mathematics from Jilin
University, Changchun, China, in 1985 and 1988,
respectively, and the Ph.D. degree in computational
mathematics from Dalian University of Technology,
Dalian, China, in 1991.

He has been a Full Professor with the School
of Mathematical Sciences, Dalian University of
Technology, since 1997. His research interests in-
clude multivariate approximation theory and compu-
tational geometry.

